summaryrefslogtreecommitdiff
path: root/ldso/ldso/ldso.c
blob: 6b0b864cb6ff3c746900c186d22a079e6a6f41a1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
/* Run an ELF binary on a linux system.

   Copyright (C) 1993-1996, Eric Youngdale.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2, or (at your option)
   any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.  */



/* Program to load an ELF binary on a linux system, and run it.
 * References to symbols in sharable libraries can be resolved by
 * an ELF sharable library. */

/* Disclaimer:  I have never seen any AT&T source code for SVr4, nor have
   I ever taken any courses on internals.  This program was developed using
   information available through the book "UNIX SYSTEM V RELEASE 4,
   Programmers guide: Ansi C and Programming Support Tools", which did
   a more than adequate job of explaining everything required to get this
   working. */

/*
 * The main trick with this program is that initially, we ourselves are not
 * dynamicly linked.  This means that we cannot access any global variables
 * since the GOT is initialized by the linker assuming a virtual address of 0,
 * and we cannot call any functions since the PLT is not initialized at all
 * (it will tend to want to call the dynamic linker
 *
 * There are further restrictions - we cannot use large switch statements,
 * since the compiler generates tables of addresses and jumps through them.
 * We can use inline functions, because these do not transfer control to
 * a new address, but they must be static so that they are not exported
 * from the modules.  We cannot use normal syscall stubs, because these
 * all reference the errno global variable which is not yet initialized.
 * We can use all of the local stack variables that we want, since these
 * are all referenced to %ebp or %esp.
 *
 * Life is further complicated by the fact that initially we do not want
 * to do a complete dynamic linking.  We want to allow the user to supply
 * new functions replacing some of the library versions, and until we have
 * the list of modules that we should search set up, we do not want to do
 * any of this.  Thus I have chosen to only perform the relocations for
 * variables that start with "_dl_" since ANSI specifies that the user is
 * not supposed to redefine any of these variables.
 *
 * Fortunately, the linker itself leaves a few clues lying around, and
 * when the kernel starts the image, there are a few further clues.
 * First of all, there is information buried on the stack that the kernel
 * leaves, which includes information about the load address that the
 * program interpreter was loaded at, the number of sections, the address
 * the application was loaded at and so forth.  Here this information
 * is stored in the array dl_info, and the indicies are taken from the
 * file /usr/include/sys/auxv.h on any SVr4 system.
 *
 * The linker itself leaves a pointer to the .dynamic section in the first
 * slot of the GOT, and as it turns out, %ebx points to ghe GOT when
 * you are using PIC code, so we just dereference this to get the address
 * of the dynamic sections.
 *
 * Typically you must load all text pages as writable so that dynamic linking
 * can succeed.  The kernel under SVr4 loads these as R/O, so we must call
 * mprotect to change the protections.  Once we are done, we should set these
 * back again, so the desired behavior is achieved.  Under linux there is
 * currently no mprotect function in the distribution kernel (although
 * someone has alpha patches), so for now everything is loaded writable.
 *
 * We do not have access to malloc and friends at the initial stages of dynamic
 * linking, and it would be handy to have some scratchpad memory available
 * for use as we set things up.  It is a bit of a kluge, but we mmap /dev/zero
 * to get one page of scratchpad.  A simpleminded _dl_malloc is provided so
 * that we have some memory that can be used for this purpose.  Typically
 * we would not want to use the same memory pool as malloc anyway - the user
 * might want to redefine malloc for example.
 *
 * Our first task is to perform a minimal linking so that we can call other
 * portions of the dynamic linker.  Once we have done this, we then build
 * the list of modules that the application requires, using LD_LIBRARY_PATH
 * if this is not a suid program (/usr/lib otherwise).  Once this is done,
 * we can do the dynamic linking as required (and we must omit the things
 * we did to get the dynamic linker up and running in the first place.
 * After we have done this, we just have a few housekeeping chores and we
 * can transfer control to the user's application.
 */

#include <stdarg.h>
#include <linux/types.h>
#include <linux/fcntl.h>
#include <linux/unistd.h>
#include <linux/elf.h>
#include <linux/mman.h>
#include "link.h"

#include "sysdep.h"
#include "hash.h"
#include "linuxelf.h"
#include "syscall.h"
#include "string.h"

#include "../config.h"

#define ALLOW_ZERO_PLTGOT

static char * _dl_malloc_addr, *_dl_mmap_zero;
char * _dl_library_path = 0; /* Where we look for libraries */
char *_dl_preload = 0; /* Things to be loaded before the libs. */
char *_dl_progname = "/lib/ld-linux-uclibc.so.1";
static char * _dl_not_lazy = 0;
static char * _dl_warn = 0; /* Used by ldd */
static char * _dl_trace_loaded_objects = 0;
static int (*_dl_elf_main)(int, char **, char**);

static int (*_dl_elf_init)(void);

void * (*_dl_malloc_function)(int size) = NULL;

struct r_debug * _dl_debug_addr = NULL;

unsigned int * _dl_brkp; 

unsigned int * _dl_envp;

#define DL_MALLOC(SIZE) ((void *) (malloc_buffer += SIZE, malloc_buffer - SIZE))
/*
 * Make sure that the malloc buffer is aligned on 4 byte boundary.  For 64 bit
 * platforms we may need to increase this to 8, but this is good enough for
 * now.  This is typically called after DL_MALLOC.
 */
#define REALIGN() malloc_buffer = (char *) (((unsigned int) malloc_buffer + 3) & ~(3))



#define ELF_HASH(RESULT,NAME) { \
  unsigned long hash = 0; \
    unsigned long tmp;  \
  char * name = NAME; \
  while (*name){  \
    hash = (hash << 4) + *name++; \
    if((tmp = hash & 0xf0000000)) hash ^= tmp >> 24; \
    hash &= ~tmp; \
  } \
  RESULT = hash; \
}
extern int _dl_linux_resolve(void);
extern int _dl_interpreter_exit(int);
extern char * _dl_strdup(const char *);
extern char * _dl_getenv(char * symbol, char ** envp);
extern void _dl_unsetenv(char * symbol, char ** envp);
extern int _dl_fixup(struct elf_resolve * tpnt);

/*
 * Datatype of a relocation on this platform
 */
#ifdef ELF_USES_RELOCA
typedef struct elf32_rela ELF_RELOC;
#else
typedef struct elf32_rel ELF_RELOC;
#endif

/*
 * This stub function is used by some debuggers.  The idea is that they
 * can set an internal breakpoint on it, so that we are notified when the
 * address mapping is changed in some way.
 */
void _dl_debug_state()
{
  return;
}

void _dl_boot(int args);

void _dl_boot(int args){
  unsigned int argc;
  char ** argv, ** envp;
  int status;

  unsigned int load_addr;
  unsigned int * got;
  unsigned int * aux_dat;
  int goof = 0;
  struct elfhdr * header;
  struct elf_resolve * tpnt;
  struct dyn_elf * rpnt;
  struct elf_resolve * app_tpnt;
  unsigned int brk_addr;
  unsigned int dl_data[AT_EGID+1];
  unsigned char * malloc_buffer, *mmap_zero;
  int (*_dl_atexit)(void *);
  int * lpnt;
  struct dynamic * dpnt;
  unsigned int *hash_addr;
  struct r_debug * debug_addr;
  unsigned int *chains;
  int indx;
  int _dl_secure;

  /* First obtain the information on the stack that tells us more about
     what binary is loaded, where it is loaded, etc, etc */

  GET_ARGV(aux_dat, args);
  argc = *(aux_dat - 1);
  argv = (char **) aux_dat;
  aux_dat += argc;  /* Skip over the argv pointers */
  aux_dat++;  /* Skip over NULL at end of argv */
  envp = (char **) aux_dat;
  while(*aux_dat) aux_dat++;  /* Skip over the envp pointers */
  aux_dat++;  /* Skip over NULL at end of envp */
  dl_data[AT_UID] = -1; /* check later to see if it is changed */
  while(*aux_dat)
    {
      unsigned int * ad1;
      ad1 = aux_dat + 1;
      if( *aux_dat <= AT_EGID ) dl_data[*aux_dat] = *ad1;
      aux_dat += 2;
    }

  /* Next, locate the GOT */

  load_addr = dl_data[AT_BASE];

  GET_GOT(got);
  dpnt = (struct dynamic *) (*got + load_addr);
 
  /* OK, time for another hack.  Now call mmap to get a page of writable
     memory that can be used for a temporary malloc.  We do not know brk
     yet, so we cannot use real malloc. */

  {
    /* This hack is to work around a suspected asm bug in gcc-2.7.0 */
    int zfileno;
#define ZFILENO ((-1 & (~zfileno)) | zfileno)
/*#define ZFILENO -1*/

#ifndef MAP_ANONYMOUS
#ifdef __sparc__
#define MAP_ANONYMOUS 0x20
#else
#error MAP_ANONYMOUS not defined and suplementary value not known
#endif
#endif

    /* See if we need to relocate this address */
    mmap_zero = malloc_buffer = (unsigned char *) _dl_mmap((void*) 0, 4096,
			     PROT_READ | PROT_WRITE, 
			     MAP_PRIVATE | MAP_ANONYMOUS, ZFILENO, 0);
    if(_dl_mmap_check_error(mmap_zero)) {
	SEND_STDERR("dl_boot: mmap of /dev/zero failed!\n");
	_dl_exit(13);
    }
  }

  tpnt = DL_MALLOC(sizeof(struct elf_resolve));
  REALIGN();
  _dl_memset (tpnt, 0, sizeof (*tpnt));
  app_tpnt = DL_MALLOC(sizeof(struct elf_resolve));
  REALIGN();
  _dl_memset (app_tpnt, 0, sizeof (*app_tpnt));

  /*
   * This is used by gdb to locate the chain of shared libraries that are currently loaded.
   */
  debug_addr = DL_MALLOC(sizeof(struct r_debug));
  REALIGN();
  _dl_memset (debug_addr, 0, sizeof (*debug_addr));

  /* OK, that was easy.  Next scan the DYNAMIC section of the image.
     We are only doing ourself right now - we will have to do the rest later */

  while(dpnt->d_tag)
    {
      tpnt->dynamic_info[dpnt->d_tag] = dpnt->d_un.d_val;
      if(dpnt->d_tag == DT_TEXTREL ||
	 SVR4_BUGCOMPAT) tpnt->dynamic_info[DT_TEXTREL] = 1;
      dpnt++;
    }

  {
    struct elf_phdr * ppnt;
    int i;
    
    ppnt = (struct elf_phdr *) dl_data[AT_PHDR];
    for(i=0; i<dl_data[AT_PHNUM]; i++, ppnt++)
      if(ppnt->p_type == PT_DYNAMIC) {
	dpnt = (struct dynamic *) ppnt->p_vaddr;
	while(dpnt->d_tag)
	  {
	    if(dpnt->d_tag > DT_JMPREL) {dpnt++; continue; }
	    app_tpnt->dynamic_info[dpnt->d_tag] = dpnt->d_un.d_val;
	    if(dpnt->d_tag == DT_DEBUG) dpnt->d_un.d_val = (int) debug_addr;
	    if(dpnt->d_tag == DT_TEXTREL ||
	       SVR4_BUGCOMPAT) app_tpnt->dynamic_info[DT_TEXTREL] = 1;
	    dpnt++;
	  }
      }
  }

  /* Get some more of the information that we will need to dynamicly link
     this module to itself */

  hash_addr = (unsigned int *) (tpnt->dynamic_info[DT_HASH]+load_addr);
  tpnt->nbucket = *hash_addr++;
  tpnt->nchain = *hash_addr++;
  tpnt->elf_buckets = hash_addr;
  hash_addr += tpnt->nbucket;
  chains = hash_addr;

  /* Ugly, ugly.  We need to call mprotect to change the protection of
     the text pages so that we can do the dynamic linking.  We can set the
     protection back again once we are done */

  {
    struct elf_phdr * ppnt;
    int i;

    /* First cover the shared library/dynamic linker. */
    if(tpnt->dynamic_info[DT_TEXTREL]) {
      header = (struct elfhdr *) dl_data[AT_BASE];	    
      ppnt = (struct elf_phdr *) (dl_data[AT_BASE] + header->e_phoff);
      for(i=0; i<header->e_phnum ; i++, ppnt++) {
	if(ppnt->p_type == PT_LOAD && !(ppnt->p_flags & PF_W))
		_dl_mprotect((void *) (load_addr + (ppnt->p_vaddr & 0xfffff000)),
			      (ppnt->p_vaddr & 0xfff) + (unsigned int) ppnt->p_filesz,
			      PROT_READ | PROT_WRITE | PROT_EXEC);
      }
    }
    
    /* Now cover the application program. */
    if(app_tpnt->dynamic_info[DT_TEXTREL]) {
      ppnt = (struct elf_phdr *) dl_data[AT_PHDR];
      for(i=0; i<dl_data[AT_PHNUM]; i++, ppnt++) {
	if(ppnt->p_type == PT_LOAD && !(ppnt->p_flags & PF_W))
	  _dl_mprotect((void *) (ppnt->p_vaddr & 0xfffff000),
		       (ppnt->p_vaddr & 0xfff) + (unsigned int) ppnt->p_filesz,
		       PROT_READ | PROT_WRITE | PROT_EXEC);
      }
    }
  }

  /* OK, now do the relocations.  We do not do a lazy binding here, so
   that once we are done, we have considerably more flexibility. */

  goof = 0;
  for(indx=0; indx < 2; indx++)
    {
      int i;
      ELF_RELOC * rpnt;
      unsigned int * reloc_addr;
      unsigned int symbol_addr;
      int symtab_index;
      unsigned int rel_addr, rel_size;

  
#ifdef ELF_USES_RELOCA
      rel_addr = (indx ? tpnt->dynamic_info[DT_JMPREL] : tpnt->dynamic_info[DT_RELA]);
      rel_size = (indx ? tpnt->dynamic_info[DT_PLTRELSZ] : tpnt->dynamic_info[DT_RELASZ]);
#else
      rel_addr = (indx ? tpnt->dynamic_info[DT_JMPREL] : tpnt->dynamic_info[DT_REL]);
      rel_size = (indx ? tpnt->dynamic_info[DT_PLTRELSZ] : tpnt->dynamic_info[DT_RELSZ]);
#endif


      if(!rel_addr) continue;

      /* Now parse the relocation information */
      rpnt = (ELF_RELOC *) (rel_addr + load_addr);
      for(i=0; i< rel_size; i+=sizeof(ELF_RELOC), rpnt++){
	reloc_addr = (int *) (load_addr + (int)rpnt->r_offset);
	symtab_index = ELF32_R_SYM(rpnt->r_info);
	symbol_addr = 0;
	if(symtab_index) {
	  char * strtab;
	  struct elf32_sym * symtab;

	  symtab = (struct elf32_sym *) (tpnt->dynamic_info[DT_SYMTAB]+load_addr);
	  strtab = (char *) (tpnt->dynamic_info[DT_STRTAB]+load_addr);

	  /* We only do a partial dynamic linking right now.  The user
	     is not supposed to redefine any symbols that start with
	     a '_', so we can do this with confidence. */

	  if (!_dl_symbol(strtab + symtab[symtab_index].st_name)) continue;

	  symbol_addr = load_addr + symtab[symtab_index].st_value;

	  if(!symbol_addr) {
	    /*
	     * This will segfault - you cannot call a function until
	     * we have finished the relocations.
	     */
	    SEND_STDERR("ELF dynamic loader - unable to self-bootstrap - symbol ");
	    SEND_STDERR(strtab + symtab[symtab_index].st_name);
	    SEND_STDERR(" undefined.\n");
	    goof++;
	  }
	}
	/*
	 * Use this machine-specific macro to perform the actual relocation.
	 */
	PERFORM_BOOTSTRAP_RELOC(rpnt, reloc_addr, symbol_addr, load_addr);
      }
    }

  if (goof)    _dl_exit(14);

  /* OK, at this point we have a crude malloc capability.  Start to build
     the tables of the modules that are required for this beast to run.
     We start with the basic executable, and then go from there.  Eventually
     we will run across ourself, and we will need to properly deal with that
     as well. */

  _dl_malloc_addr = malloc_buffer;

  _dl_mmap_zero = mmap_zero;
/*  tpnt = _dl_malloc(sizeof(struct elf_resolve)); */

/* Now we have done the mandatory linking of some things.  We are now
   free to start using global variables, since these things have all been
   fixed up by now.  Still no function calls outside of this library ,
   since the dynamic resolver is not yet ready. */

  lpnt = (int *) (tpnt->dynamic_info[DT_PLTGOT] + load_addr);
  INIT_GOT(lpnt, tpnt);

  /* OK, this was a big step, now we need to scan all of the user images
     and load them properly. */

  tpnt->next = 0;
  tpnt->libname = 0;
  tpnt->libtype = program_interpreter;

  { struct elfhdr * epnt;
    struct elf_phdr * ppnt;
    int i;

    epnt = (struct elfhdr *) dl_data[AT_BASE];
    tpnt->n_phent = epnt->e_phnum;
    tpnt->ppnt = ppnt = (struct elf_phdr *) (load_addr + epnt->e_phoff);
    for(i=0;i < epnt->e_phnum; i++, ppnt++){
      if(ppnt->p_type == PT_DYNAMIC) {
	tpnt->dynamic_addr = ppnt->p_vaddr + load_addr;
	tpnt->dynamic_size = ppnt->p_filesz;
      }
    }
  }

  tpnt->chains = chains;
  tpnt->loadaddr = (char *) load_addr;

  brk_addr = 0;
  rpnt = NULL;

  /* At this point we are now free to examine the user application,
     and figure out which libraries are supposed to be called.  Until
     we have this list, we will not be completely ready for dynamic linking */

  {
    struct elf_phdr * ppnt;
    int i;

    ppnt = (struct elf_phdr *) dl_data[AT_PHDR];
    for(i=0; i<dl_data[AT_PHNUM]; i++, ppnt++) {
      if(ppnt->p_type == PT_LOAD) {
	if(ppnt->p_vaddr + ppnt->p_memsz > brk_addr) 
	  brk_addr = ppnt->p_vaddr + ppnt->p_memsz;
      }
      if(ppnt->p_type == PT_DYNAMIC) {
#ifndef ALLOW_ZERO_PLTGOT
	/* make sure it's really there. */
	if (app_tpnt->dynamic_info[DT_PLTGOT] == 0) continue;
#endif
	/* OK, we have what we need - slip this one into the list. */
	app_tpnt = _dl_add_elf_hash_table("", 0, 
			    app_tpnt->dynamic_info, ppnt->p_vaddr, ppnt->p_filesz);
	_dl_loaded_modules->libtype = elf_executable;
	_dl_loaded_modules->ppnt = (struct elf_phdr *) dl_data[AT_PHDR];
	_dl_loaded_modules->n_phent = dl_data[AT_PHNUM];
	_dl_symbol_tables = rpnt = 
	   (struct dyn_elf *) _dl_malloc(sizeof(struct dyn_elf));
	_dl_memset (rpnt, 0, sizeof (*rpnt));
	rpnt->dyn = _dl_loaded_modules;
	app_tpnt->usage_count++;
	app_tpnt->symbol_scope = _dl_symbol_tables;
	lpnt = (int *) (app_tpnt->dynamic_info[DT_PLTGOT]);
#ifdef ALLOW_ZERO_PLTGOT
	if (lpnt)
#endif
	  INIT_GOT(lpnt, _dl_loaded_modules);
      }
      if(ppnt->p_type == PT_INTERP) { /* OK, fill this in - we did not have
					 this before */
	tpnt->libname =  _dl_strdup((char *) ppnt->p_offset +(dl_data[AT_PHDR] & 0xfffff000));
      }
    }
  }

  if (argv[0])
    _dl_progname = argv[0];

  /* Now we need to figure out what kind of options are selected.
   Note that for SUID programs we ignore the settings in LD_LIBRARY_PATH */
  {
    _dl_not_lazy = _dl_getenv("LD_BIND_NOW",envp);

    if ( (dl_data[AT_UID] == -1 && _dl_suid_ok()) ||
	 (dl_data[AT_UID] != -1 && dl_data[AT_UID] == dl_data[AT_EUID] &&
	  dl_data[AT_GID] == dl_data[AT_EGID]))
    {
      _dl_secure = 0;
      _dl_preload = _dl_getenv("LD_PRELOAD", envp);
      _dl_library_path = _dl_getenv("LD_LIBRARY_PATH",envp);
    }
    else
    {
      _dl_secure = 1;
      _dl_preload = _dl_getenv("LD_PRELOAD", envp);
      _dl_unsetenv("LD_AOUT_PRELOAD", envp);
      _dl_unsetenv("LD_LIBRARY_PATH", envp);
      _dl_unsetenv("LD_AOUT_LIBRARY_PATH", envp);
      _dl_library_path = NULL;
    }
  }

  _dl_trace_loaded_objects = _dl_getenv("LD_TRACE_LOADED_OBJECTS", envp);

  /* OK, we now have the application in the list, and we have some
     basic stuff in place.  Now search through the list for other shared
     libraries that should be loaded, and insert them on the list in the
     correct order. */

#ifdef USE_CACHE
  _dl_map_cache();
#endif

  {
    struct elf_resolve *tcurr;
    struct elf_resolve *tpnt1;
    char *lpnt;

    if (_dl_preload) {
      char c, *str, *str2;

      str = _dl_preload;
      while (*str == ':' || *str == ' ' || *str == '\t')
	str++;
      while (*str) {
	str2 = str;
	while (*str2 && *str2 != ':' && *str2 != ' ' && *str2 != '\t')
	  str2++;
	c = *str2;
	*str2 = '\0';
	if (!_dl_secure || _dl_strchr(str, '/') == NULL) {
	  tpnt1 = _dl_load_shared_library(_dl_secure, NULL, str);
	  if (!tpnt1) {
	    if (_dl_trace_loaded_objects)
	      _dl_fdprintf(1, "\t%s => not found\n", str);
	    else {
	      _dl_fdprintf(2, "%s: can't load library '%s'\n",
			   _dl_progname, str);
	      _dl_exit(15);
	    }
	  } else {
	    if (_dl_trace_loaded_objects && !tpnt1->usage_count) {
	      /* this is a real hack to make ldd not print the
		 library itself when run on a library. */
	      if (_dl_strcmp(_dl_progname, str) != 0)
		_dl_fdprintf(1, "\t%s => %s (0x%x)\n", str, tpnt1->libname,
			     (unsigned)tpnt1->loadaddr);
	    }
	    rpnt->next = 
	      (struct dyn_elf *) _dl_malloc(sizeof(struct dyn_elf));
	    _dl_memset (rpnt->next, 0, sizeof (*(rpnt->next)));
	    rpnt = rpnt->next;
	    tpnt1->usage_count++;
	    tpnt1->symbol_scope = _dl_symbol_tables;
	    tpnt1->libtype = elf_lib;
	    rpnt->dyn = tpnt1;
	  }
	}
	*str2 = c;
	str = str2;
	while (*str == ':' || *str == ' ' || *str == '\t')
	  str++;
      }
    }

    {
      int fd;
      struct kernel_stat st;
      char *preload;

      if (!_dl_stat(LDSO_PRELOAD, &st)) {
	if ((fd = _dl_open(LDSO_PRELOAD, O_RDONLY)) < 0) {
	  _dl_fdprintf(2, "%s: can't open file '%s'\n", _dl_progname, 
		       LDSO_PRELOAD);
	} else {
	  preload = (caddr_t)_dl_mmap(0, st.st_size+1, PROT_READ|PROT_WRITE, 
				      MAP_PRIVATE, fd, 0);
	  _dl_close (fd);
	  if (preload == (caddr_t)-1) {
	    _dl_fdprintf(2, "%s: can't map file '%s'\n", _dl_progname, 
			 LDSO_PRELOAD);
	  } else {
	    char c, *cp, *cp2;

	    /* convert all separators and comments to spaces */
	    for (cp = preload; *cp; /*nada*/) {
	      if (*cp == ':' || *cp == '\t' || *cp == '\n') {
		*cp++ = ' ';
	      } else if (*cp == '#') {
		do
		  *cp++ = ' ';
		while (*cp != '\n' && *cp != '\0');
	      } else {
		cp++;
	      }
	    }

	    /* find start of first library */
	    for (cp = preload; *cp && *cp == ' '; cp++)
	      /*nada*/;

	    while (*cp) {
	      /* find end of library */
	      for (cp2 = cp; *cp && *cp != ' '; cp++)
		/*nada*/;
	      c = *cp;
	      *cp = '\0';

	      tpnt1 = _dl_load_shared_library(0, NULL, cp2);
	      if (!tpnt1) {
		if (_dl_trace_loaded_objects)
		  _dl_fdprintf(1, "\t%s => not found\n", cp2);
		else {
		  _dl_fdprintf(2, "%s: can't load library '%s'\n",
			       _dl_progname, cp2);
		  _dl_exit(15);
		}
	      } else {
		if (_dl_trace_loaded_objects && !tpnt1->usage_count)
		  _dl_fdprintf(1, "\t%s => %s (0x%x)\n", cp2, tpnt1->libname,
			       (unsigned)tpnt1->loadaddr);
                rpnt->next = 
		  (struct dyn_elf *) _dl_malloc(sizeof(struct dyn_elf));
		_dl_memset (rpnt->next, 0, sizeof (*(rpnt->next)));
		rpnt = rpnt->next;
		tpnt1->usage_count++;
		tpnt1->symbol_scope = _dl_symbol_tables;
		tpnt1->libtype = elf_lib;
		rpnt->dyn = tpnt1;
	      }

	      /* find start of next library */
	      *cp = c;
	      for (/*nada*/; *cp && *cp == ' '; cp++)
		/*nada*/;
	    }

	    _dl_munmap(preload, st.st_size+1);
	  }
	}
      }
    }

    for (tcurr = _dl_loaded_modules; tcurr; tcurr = tcurr->next)
    {
      for (dpnt = (struct dynamic *)tcurr->dynamic_addr; dpnt->d_tag; dpnt++)
      {
	if(dpnt->d_tag == DT_NEEDED)
	{
	  lpnt = tcurr->loadaddr + tcurr->dynamic_info[DT_STRTAB] + 
	    dpnt->d_un.d_val;
	  if (tpnt && _dl_strcmp(lpnt, tpnt->libname) == 0)
	  {
	    struct elf_resolve * ttmp;
	    ttmp = _dl_loaded_modules;
	    while (ttmp->next) 
	      ttmp = ttmp->next;
	    ttmp->next = tpnt;
	    tpnt->prev = ttmp;
	    tpnt->next = NULL;
	    rpnt->next = 
	      (struct dyn_elf *) _dl_malloc(sizeof(struct dyn_elf));
	    _dl_memset (rpnt->next, 0, sizeof (*(rpnt->next)));
	    rpnt = rpnt->next;
	    rpnt->dyn = tpnt;
	    tpnt->usage_count++;
	    tpnt->symbol_scope = _dl_symbol_tables;
	    tpnt = NULL;
	    continue;
	  }
	  if (!(tpnt1 = _dl_load_shared_library(0, tcurr, lpnt)))
	  {
	    if (_dl_trace_loaded_objects)
	      _dl_fdprintf(1, "\t%s => not found\n", lpnt);
	    else
	    {
	      _dl_fdprintf(2, "%s: can't load library '%s'\n",
			   _dl_progname, lpnt);
	      _dl_exit(16);
	    }
	  }
	  else
	  {
	    if (_dl_trace_loaded_objects && !tpnt1->usage_count)
	      _dl_fdprintf(1, "\t%s => %s (0x%x)\n", lpnt, tpnt1->libname,
			   (unsigned)tpnt1->loadaddr);
	    rpnt->next = 
	      (struct dyn_elf *) _dl_malloc(sizeof(struct dyn_elf));
	    _dl_memset (rpnt->next, 0, sizeof (*(rpnt->next)));
	    rpnt = rpnt->next;
	    tpnt1->usage_count++;
	    tpnt1->symbol_scope = _dl_symbol_tables;
	    tpnt1->libtype = elf_lib;
	    rpnt->dyn = tpnt1;
	  }
	}
      }
    }
  }

#ifdef USE_CACHE
  _dl_unmap_cache();
#endif

    /* ldd uses uses this.  I am not sure how you pick up the other flags */ 
  if(_dl_trace_loaded_objects)
    {
      _dl_warn = _dl_getenv("LD_WARN", envp);
      if (!_dl_warn) _dl_exit(0);
    }

  /*
   * If the program interpreter is not in the module chain, add it.  This will
   * be required for dlopen to be able to access the internal functions in the 
   * dynamic linker.
   */
  if(tpnt) {
    struct elf_resolve * tcurr;

    tcurr = _dl_loaded_modules;
    if (tcurr)
      while(tcurr->next) tcurr = tcurr->next;
    tpnt->next = NULL;
    tpnt->usage_count++;

    if (tcurr) {
      tcurr->next = tpnt;
      tpnt->prev = tcurr;
    }
    else {
      _dl_loaded_modules = tpnt;
      tpnt->prev = NULL;
    }
    if (rpnt) {
      rpnt->next = 
	(struct dyn_elf *) _dl_malloc(sizeof(struct dyn_elf));
      _dl_memset (rpnt->next, 0, sizeof (*(rpnt->next)));
      rpnt = rpnt->next;
    } else {
      rpnt = 	(struct dyn_elf *) _dl_malloc(sizeof(struct dyn_elf));
      _dl_memset (rpnt, 0, sizeof (*(rpnt->next)));
    }
    rpnt->dyn = tpnt;
    tpnt = NULL;
  }

  /*
   * OK, now all of the kids are tucked into bed in their proper addresses.
   * Now we go through and look for REL and RELA records that indicate fixups
   * to the GOT tables.  We need to do this in reverse order so that COPY
   * directives work correctly */


  goof = _dl_loaded_modules ? _dl_fixup(_dl_loaded_modules) : 0;


  /* Some flavors of SVr4 do not generate the R_*_COPY directive,
   and we have to manually search for entries that require fixups. 
   Solaris gets this one right, from what I understand.  */


  if (_dl_symbol_tables)
    goof += _dl_copy_fixups(_dl_symbol_tables);

  if(goof || _dl_trace_loaded_objects) _dl_exit(0);

  /* OK, at this point things are pretty much ready to run.  Now we
     need to touch up a few items that are required, and then
     we can let the user application have at it.  Note that
     the dynamic linker itself is not guaranteed to be fully
     dynamicly linked if we are using ld.so.1, so we have to look
     up each symbol individually. */


  _dl_brkp = (unsigned int *) _dl_find_hash("___brk_addr", NULL, 1, NULL, 0);
  if (_dl_brkp) *_dl_brkp = brk_addr;
  _dl_envp = (unsigned int *) _dl_find_hash("__environ", NULL, 1, NULL, 0);

  if (_dl_envp) *_dl_envp = (unsigned int) envp;

  {
    int i;
    struct elf_phdr * ppnt;

  /* We had to set the protections of all pages to R/W for dynamic linking.
     Set text pages back to R/O */
  for(tpnt = _dl_loaded_modules; tpnt; tpnt = tpnt->next)
    for(ppnt = tpnt->ppnt, i=0; i < tpnt->n_phent; i++, ppnt++)
      if(ppnt->p_type == PT_LOAD && !(ppnt->p_flags & PF_W) &&
	 tpnt->dynamic_info[DT_TEXTREL])
	_dl_mprotect((void *) (tpnt->loadaddr + (ppnt->p_vaddr & 0xfffff000)),
		     (ppnt->p_vaddr & 0xfff) + (unsigned int) ppnt->p_filesz,
		     LXFLAGS(ppnt->p_flags));

  }

  _dl_atexit = (int (*)(void *)) _dl_find_hash("atexit", NULL, 1, NULL, 0);

  /*
   * OK, fix one more thing - set up the debug_addr structure to point
   * to our chain.  Later we may need to fill in more fields, but this
   * should be enough for now.
   */
  debug_addr->r_map = (struct link_map *) _dl_loaded_modules;
  debug_addr->r_version = 1;
  debug_addr->r_ldbase = load_addr;
  debug_addr->r_brk = (unsigned long) &_dl_debug_state;
  _dl_debug_addr = debug_addr;
  debug_addr->r_state = RT_CONSISTENT;
  /* This is written in this funny way to keep gcc from inlining the
     function call. */
  ((void (*)(void))debug_addr->r_brk)();

  for(tpnt = _dl_loaded_modules; tpnt; tpnt = tpnt->next)
    {
      /* Apparently crt1 for the application is responsible for handling this.
       * We only need to run the init/fini for shared libraries
       */
      if (tpnt->libtype == program_interpreter ||
	tpnt->libtype == elf_executable) continue;
      if (tpnt->init_flag & INIT_FUNCS_CALLED) continue;
      tpnt->init_flag |= INIT_FUNCS_CALLED;
      
      if(tpnt->dynamic_info[DT_INIT]) {
	_dl_elf_init = (int (*)(void)) (tpnt->loadaddr + 
				    tpnt->dynamic_info[DT_INIT]);
	(*_dl_elf_init)();
      }
      if(_dl_atexit && tpnt->dynamic_info[DT_FINI])
      {
        (*_dl_atexit)(tpnt->loadaddr + tpnt->dynamic_info[DT_FINI]);
      }
#undef DL_DEBUG
#ifdef DL_DEBUG
      else
      {
	_dl_fdprintf(2, tpnt->libname);
	_dl_fdprintf(2, ": ");
	if (!_dl_atexit)
	  _dl_fdprintf(2, "The address is atexit () is 0x0.");
	if (!tpnt->dynamic_info[DT_FINI])
	  _dl_fdprintf(2, "Invalid .fini section.");
	_dl_fdprintf(2, "\n");
      }
#endif
#undef DL_DEBUG
   }

  /* OK we are done here.  Turn out the lights, and lock up. */
  _dl_elf_main = (int (*)(int, char**, char**)) dl_data[AT_ENTRY];


  /*
   * Transfer control to the application.
   */
  START();
}

int _dl_fixup(struct elf_resolve * tpnt)
{
  int goof = 0;
  if(tpnt->next) goof += _dl_fixup(tpnt->next);

  if(tpnt->dynamic_info[DT_REL]) {
#ifdef ELF_USES_RELOCA
    _dl_fdprintf(2, "%s: can't handle REL relocation records\n", _dl_progname);
    _dl_exit(17);
#else
    if (tpnt->init_flag & RELOCS_DONE) return goof;
    tpnt->init_flag |= RELOCS_DONE;
   
    goof += _dl_parse_relocation_information(tpnt, tpnt->dynamic_info[DT_REL],
					     tpnt->dynamic_info[DT_RELSZ], 0);
#endif
  }
  if(tpnt->dynamic_info[DT_RELA]) {
#ifdef ELF_USES_RELOCA
    if (tpnt->init_flag & RELOCS_DONE) return goof;
    tpnt->init_flag |= RELOCS_DONE;
   
    goof += _dl_parse_relocation_information(tpnt, tpnt->dynamic_info[DT_RELA],
					     tpnt->dynamic_info[DT_RELASZ], 0);
#else
    _dl_fdprintf(2, "%s: can't handle RELA relocation records\n", _dl_progname);
    _dl_exit(18);
#endif
  }
  if(tpnt->dynamic_info[DT_JMPREL])
    {
      if (tpnt->init_flag & JMP_RELOCS_DONE) return goof;
      tpnt->init_flag |= JMP_RELOCS_DONE;
      
      if(! _dl_not_lazy || *_dl_not_lazy == 0)
	_dl_parse_lazy_relocation_information(tpnt, tpnt->dynamic_info[DT_JMPREL],
					      tpnt->dynamic_info[DT_PLTRELSZ], 0);
      else
	goof +=  _dl_parse_relocation_information(tpnt,
						  tpnt->dynamic_info[DT_JMPREL],
						  tpnt->dynamic_info[DT_PLTRELSZ], 0);
    }
  return goof;
}

void * _dl_malloc(int size) {
  void * retval;

  if(_dl_malloc_function)
  	return (*_dl_malloc_function)(size);

  if(_dl_malloc_addr-_dl_mmap_zero+size>4096) {
	_dl_mmap_zero = _dl_malloc_addr = (unsigned char *) _dl_mmap((void*) 0, size,
  				PROT_READ | PROT_WRITE, 
  				MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
  	if(_dl_mmap_check_error(_dl_mmap_zero)) {
  	    _dl_fdprintf(2, "%s: can't map '/dev/zero'\n", _dl_progname);
  	    _dl_exit(20);
  	}
  }
  retval = _dl_malloc_addr;
  _dl_malloc_addr += size;

  /*
   * Align memory to 4 byte boundary.  Some platforms require this, others
   * simply get better performance.
   */
  _dl_malloc_addr = (char *) (((unsigned int) _dl_malloc_addr + 3) & ~(3));
  return retval;
}

char * _dl_getenv(char *symbol, char **envp)
{
  char *pnt;
  char *pnt1;
  while ((pnt = *envp++)) {
    pnt1 = symbol;
    while (*pnt && *pnt == *pnt1)
      pnt1++, pnt++;
    if (!*pnt || *pnt != '=' || *pnt1)
      continue;
    return pnt+1;
  }
  return 0;
}

void _dl_unsetenv(char *symbol, char **envp)
{
  char *pnt;
  char *pnt1;
  char **newenvp = envp;
  for (pnt = *envp; pnt; pnt = *++envp) {
    pnt1 = symbol;
    while (*pnt && *pnt == *pnt1)
      pnt1++, pnt++;
    if(!*pnt || *pnt != '=' || *pnt1)
      *newenvp++ = *envp;
  }
  *newenvp++ = *envp;
  return;
}

char * _dl_strdup(const char * string){
  char * retval;
  int len;

  len = _dl_strlen(string);
  retval = _dl_malloc(len + 1);
  _dl_strcpy(retval, string);
  return retval;
}

/* In principle we could do the .fini stuff here, but we already
   registered this stuff with atexit */
int _dl_interpreter_exit(int exitcode){
/*  _dl_fdprintf(2, "Hey, look where I am!\n"); */
  return 0;
}