diff options
Diffstat (limited to 'libm/float/incbetf.c')
-rw-r--r-- | libm/float/incbetf.c | 424 |
1 files changed, 0 insertions, 424 deletions
diff --git a/libm/float/incbetf.c b/libm/float/incbetf.c deleted file mode 100644 index fed9aae4b..000000000 --- a/libm/float/incbetf.c +++ /dev/null @@ -1,424 +0,0 @@ -/* incbetf.c - * - * Incomplete beta integral - * - * - * SYNOPSIS: - * - * float a, b, x, y, incbetf(); - * - * y = incbetf( a, b, x ); - * - * - * DESCRIPTION: - * - * Returns incomplete beta integral of the arguments, evaluated - * from zero to x. The function is defined as - * - * x - * - - - * | (a+b) | | a-1 b-1 - * ----------- | t (1-t) dt. - * - - | | - * | (a) | (b) - - * 0 - * - * The domain of definition is 0 <= x <= 1. In this - * implementation a and b are restricted to positive values. - * The integral from x to 1 may be obtained by the symmetry - * relation - * - * 1 - incbet( a, b, x ) = incbet( b, a, 1-x ). - * - * The integral is evaluated by a continued fraction expansion. - * If a < 1, the function calls itself recursively after a - * transformation to increase a to a+1. - * - * ACCURACY: - * - * Tested at random points (a,b,x) with a and b in the indicated - * interval and x between 0 and 1. - * - * arithmetic domain # trials peak rms - * Relative error: - * IEEE 0,30 10000 3.7e-5 5.1e-6 - * IEEE 0,100 10000 1.7e-4 2.5e-5 - * The useful domain for relative error is limited by underflow - * of the single precision exponential function. - * Absolute error: - * IEEE 0,30 100000 2.2e-5 9.6e-7 - * IEEE 0,100 10000 6.5e-5 3.7e-6 - * - * Larger errors may occur for extreme ratios of a and b. - * - * ERROR MESSAGES: - * message condition value returned - * incbetf domain x<0, x>1 0.0 - */ - - -/* -Cephes Math Library, Release 2.2: July, 1992 -Copyright 1984, 1987, 1992 by Stephen L. Moshier -Direct inquiries to 30 Frost Street, Cambridge, MA 02140 -*/ - -#include <math.h> - -#ifdef ANSIC -float lgamf(float), expf(float), logf(float); -static float incbdf(float, float, float); -static float incbcff(float, float, float); -float incbpsf(float, float, float); -#else -float lgamf(), expf(), logf(); -float incbpsf(); -static float incbcff(), incbdf(); -#endif - -#define fabsf(x) ( (x) < 0 ? -(x) : (x) ) - -/* BIG = 1/MACHEPF */ -#define BIG 16777216. -extern float MACHEPF, MAXLOGF; -#define MINLOGF (-MAXLOGF) - -float incbetf( float aaa, float bbb, float xxx ) -{ -float aa, bb, xx, ans, a, b, t, x, onemx; -int flag; - -aa = aaa; -bb = bbb; -xx = xxx; -if( (xx <= 0.0) || ( xx >= 1.0) ) - { - if( xx == 0.0 ) - return(0.0); - if( xx == 1.0 ) - return( 1.0 ); - mtherr( "incbetf", DOMAIN ); - return( 0.0 ); - } - -onemx = 1.0 - xx; - - -/* transformation for small aa */ - -if( aa <= 1.0 ) - { - ans = incbetf( aa+1.0, bb, xx ); - t = aa*logf(xx) + bb*logf( 1.0-xx ) - + lgamf(aa+bb) - lgamf(aa+1.0) - lgamf(bb); - if( t > MINLOGF ) - ans += expf(t); - return( ans ); - } - - -/* see if x is greater than the mean */ - -if( xx > (aa/(aa+bb)) ) - { - flag = 1; - a = bb; - b = aa; - t = xx; - x = onemx; - } -else - { - flag = 0; - a = aa; - b = bb; - t = onemx; - x = xx; - } - -/* transformation for small aa */ -/* -if( a <= 1.0 ) - { - ans = a*logf(x) + b*logf( onemx ) - + lgamf(a+b) - lgamf(a+1.0) - lgamf(b); - t = incbetf( a+1.0, b, x ); - if( ans > MINLOGF ) - t += expf(ans); - goto bdone; - } -*/ -/* Choose expansion for optimal convergence */ - - -if( b > 10.0 ) - { -if( fabsf(b*x/a) < 0.3 ) - { - t = incbpsf( a, b, x ); - goto bdone; - } - } - -ans = x * (a+b-2.0)/(a-1.0); -if( ans < 1.0 ) - { - ans = incbcff( a, b, x ); - t = b * logf( t ); - } -else - { - ans = incbdf( a, b, x ); - t = (b-1.0) * logf(t); - } - -t += a*logf(x) + lgamf(a+b) - lgamf(a) - lgamf(b); -t += logf( ans/a ); - -if( t < MINLOGF ) - { - t = 0.0; - if( flag == 0 ) - { - mtherr( "incbetf", UNDERFLOW ); - } - } -else - { - t = expf(t); - } -bdone: - -if( flag ) - t = 1.0 - t; - -return( t ); -} - -/* Continued fraction expansion #1 - * for incomplete beta integral - */ - -static float incbcff( float aa, float bb, float xx ) -{ -float a, b, x, xk, pk, pkm1, pkm2, qk, qkm1, qkm2; -float k1, k2, k3, k4, k5, k6, k7, k8; -float r, t, ans; -static float big = BIG; -int n; - -a = aa; -b = bb; -x = xx; -k1 = a; -k2 = a + b; -k3 = a; -k4 = a + 1.0; -k5 = 1.0; -k6 = b - 1.0; -k7 = k4; -k8 = a + 2.0; - -pkm2 = 0.0; -qkm2 = 1.0; -pkm1 = 1.0; -qkm1 = 1.0; -ans = 1.0; -r = 0.0; -n = 0; -do - { - - xk = -( x * k1 * k2 )/( k3 * k4 ); - pk = pkm1 + pkm2 * xk; - qk = qkm1 + qkm2 * xk; - pkm2 = pkm1; - pkm1 = pk; - qkm2 = qkm1; - qkm1 = qk; - - xk = ( x * k5 * k6 )/( k7 * k8 ); - pk = pkm1 + pkm2 * xk; - qk = qkm1 + qkm2 * xk; - pkm2 = pkm1; - pkm1 = pk; - qkm2 = qkm1; - qkm1 = qk; - - if( qk != 0 ) - r = pk/qk; - if( r != 0 ) - { - t = fabsf( (ans - r)/r ); - ans = r; - } - else - t = 1.0; - - if( t < MACHEPF ) - goto cdone; - - k1 += 1.0; - k2 += 1.0; - k3 += 2.0; - k4 += 2.0; - k5 += 1.0; - k6 -= 1.0; - k7 += 2.0; - k8 += 2.0; - - if( (fabsf(qk) + fabsf(pk)) > big ) - { - pkm2 *= MACHEPF; - pkm1 *= MACHEPF; - qkm2 *= MACHEPF; - qkm1 *= MACHEPF; - } - if( (fabsf(qk) < MACHEPF) || (fabsf(pk) < MACHEPF) ) - { - pkm2 *= big; - pkm1 *= big; - qkm2 *= big; - qkm1 *= big; - } - } -while( ++n < 100 ); - -cdone: -return(ans); -} - - -/* Continued fraction expansion #2 - * for incomplete beta integral - */ - -static float incbdf( float aa, float bb, float xx ) -{ -float a, b, x, xk, pk, pkm1, pkm2, qk, qkm1, qkm2; -float k1, k2, k3, k4, k5, k6, k7, k8; -float r, t, ans, z; -static float big = BIG; -int n; - -a = aa; -b = bb; -x = xx; -k1 = a; -k2 = b - 1.0; -k3 = a; -k4 = a + 1.0; -k5 = 1.0; -k6 = a + b; -k7 = a + 1.0;; -k8 = a + 2.0; - -pkm2 = 0.0; -qkm2 = 1.0; -pkm1 = 1.0; -qkm1 = 1.0; -z = x / (1.0-x); -ans = 1.0; -r = 0.0; -n = 0; -do - { - - xk = -( z * k1 * k2 )/( k3 * k4 ); - pk = pkm1 + pkm2 * xk; - qk = qkm1 + qkm2 * xk; - pkm2 = pkm1; - pkm1 = pk; - qkm2 = qkm1; - qkm1 = qk; - - xk = ( z * k5 * k6 )/( k7 * k8 ); - pk = pkm1 + pkm2 * xk; - qk = qkm1 + qkm2 * xk; - pkm2 = pkm1; - pkm1 = pk; - qkm2 = qkm1; - qkm1 = qk; - - if( qk != 0 ) - r = pk/qk; - if( r != 0 ) - { - t = fabsf( (ans - r)/r ); - ans = r; - } - else - t = 1.0; - - if( t < MACHEPF ) - goto cdone; - - k1 += 1.0; - k2 -= 1.0; - k3 += 2.0; - k4 += 2.0; - k5 += 1.0; - k6 += 1.0; - k7 += 2.0; - k8 += 2.0; - - if( (fabsf(qk) + fabsf(pk)) > big ) - { - pkm2 *= MACHEPF; - pkm1 *= MACHEPF; - qkm2 *= MACHEPF; - qkm1 *= MACHEPF; - } - if( (fabsf(qk) < MACHEPF) || (fabsf(pk) < MACHEPF) ) - { - pkm2 *= big; - pkm1 *= big; - qkm2 *= big; - qkm1 *= big; - } - } -while( ++n < 100 ); - -cdone: -return(ans); -} - - -/* power series */ -float incbpsf( float aa, float bb, float xx ) -{ -float a, b, x, t, u, y, s; - -a = aa; -b = bb; -x = xx; - -y = a * logf(x) + (b-1.0)*logf(1.0-x) - logf(a); -y -= lgamf(a) + lgamf(b); -y += lgamf(a+b); - - -t = x / (1.0 - x); -s = 0.0; -u = 1.0; -do - { - b -= 1.0; - if( b == 0.0 ) - break; - a += 1.0; - u *= t*b/a; - s += u; - } -while( fabsf(u) > MACHEPF ); - -if( y < MINLOGF ) - { - mtherr( "incbetf", UNDERFLOW ); - s = 0.0; - } -else - s = expf(y) * (1.0 + s); -/*printf( "incbpsf: %.4e\n", s );*/ -return(s); -} |