summaryrefslogtreecommitdiff
path: root/libm/float/ellikf.c
diff options
context:
space:
mode:
Diffstat (limited to 'libm/float/ellikf.c')
-rw-r--r--libm/float/ellikf.c113
1 files changed, 0 insertions, 113 deletions
diff --git a/libm/float/ellikf.c b/libm/float/ellikf.c
deleted file mode 100644
index 8ec890926..000000000
--- a/libm/float/ellikf.c
+++ /dev/null
@@ -1,113 +0,0 @@
-/* ellikf.c
- *
- * Incomplete elliptic integral of the first kind
- *
- *
- *
- * SYNOPSIS:
- *
- * float phi, m, y, ellikf();
- *
- * y = ellikf( phi, m );
- *
- *
- *
- * DESCRIPTION:
- *
- * Approximates the integral
- *
- *
- *
- * phi
- * -
- * | |
- * | dt
- * F(phi\m) = | ------------------
- * | 2
- * | | sqrt( 1 - m sin t )
- * -
- * 0
- *
- * of amplitude phi and modulus m, using the arithmetic -
- * geometric mean algorithm.
- *
- *
- *
- *
- * ACCURACY:
- *
- * Tested at random points with phi in [0, 2] and m in
- * [0, 1].
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE 0,2 10000 2.9e-7 5.8e-8
- *
- *
- */
-
-
-/*
-Cephes Math Library Release 2.2: July, 1992
-Copyright 1984, 1987, 1992 by Stephen L. Moshier
-Direct inquiries to 30 Frost Street, Cambridge, MA 02140
-*/
-
-/* Incomplete elliptic integral of first kind */
-
-#include <math.h>
-extern float PIF, PIO2F, MACHEPF;
-
-#define fabsf(x) ( (x) < 0 ? -(x) : (x) )
-
-#ifdef ANSIC
-float sqrtf(float), logf(float), sinf(float), tanf(float), atanf(float);
-#else
-float sqrtf(), logf(), sinf(), tanf(), atanf();
-#endif
-
-
-float ellikf( float phia, float ma )
-{
-float phi, m, a, b, c, temp;
-float t;
-int d, mod, sign;
-
-phi = phia;
-m = ma;
-if( m == 0.0 )
- return( phi );
-if( phi < 0.0 )
- {
- phi = -phi;
- sign = -1;
- }
-else
- sign = 0;
-a = 1.0;
-b = 1.0 - m;
-if( b == 0.0 )
- return( logf( tanf( 0.5*(PIO2F + phi) ) ) );
-b = sqrtf(b);
-c = sqrtf(m);
-d = 1;
-t = tanf( phi );
-mod = (phi + PIO2F)/PIF;
-
-while( fabsf(c/a) > MACHEPF )
- {
- temp = b/a;
- phi = phi + atanf(t*temp) + mod * PIF;
- mod = (phi + PIO2F)/PIF;
- t = t * ( 1.0 + temp )/( 1.0 - temp * t * t );
- c = ( a - b )/2.0;
- temp = sqrtf( a * b );
- a = ( a + b )/2.0;
- b = temp;
- d += d;
- }
-
-temp = (atanf(t) + mod * PIF)/(d * a);
-if( sign < 0 )
- temp = -temp;
-return( temp );
-}