1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
|
/* xtanh.c */
/* hyperbolic tangent check routine */
/* this subroutine is used by the exponential function routine */
/* by Stephen L. Moshier. */
#include "ehead.h"
void etanh( x, y )
unsigned short *x, *y;
{
unsigned short e[NE], r[NE], j[NE], xx[NE], m2[NE];
short i, n;
long lj;
emov( x, r );
r[NE-1] &= (unsigned short )0x7fff;
if( ecmp(r, eone) >= 0 )
{
/* tanh(x) = (exp(x) - exp(-x)) / (exp(x) + exp(-x))
* Note eexp() calls xtanh, but with an argument less than (1 + log 2)/2.
*/
eexp( r, e );
ediv( e, eone, r );
esub( r, e, xx );
eadd( r, e, j );
ediv( j, xx, y );
return;
}
emov( etwo, m2 );
eneg( m2 );
n = NBITS/8; /* Number of terms to do in the continued fraction */
lj = 2 * n + 1;
ltoe( &lj, j );
emov( j, e );
emul( x, x, xx );
/* continued fraction */
for( i=0; i<n; i++)
{
ediv( e, xx, r );
eadd( m2, j, j );
eadd( r, j, e );
}
ediv( e, x, y );
}
|