1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
|
/* ndtril.c
*
* Inverse of Normal distribution function
*
*
*
* SYNOPSIS:
*
* long double x, y, ndtril();
*
* x = ndtril( y );
*
*
*
* DESCRIPTION:
*
* Returns the argument, x, for which the area under the
* Gaussian probability density function (integrated from
* minus infinity to x) is equal to y.
*
*
* For small arguments 0 < y < exp(-2), the program computes
* z = sqrt( -2 log(y) ); then the approximation is
* x = z - log(z)/z - (1/z) P(1/z) / Q(1/z) .
* For larger arguments, x/sqrt(2 pi) = w + w^3 R(w^2)/S(w^2)) ,
* where w = y - 0.5 .
*
* ACCURACY:
*
* Relative error:
* arithmetic domain # trials peak rms
* Arguments uniformly distributed:
* IEEE 0, 1 5000 7.8e-19 9.9e-20
* Arguments exponentially distributed:
* IEEE exp(-11355),-1 30000 1.7e-19 4.3e-20
*
*
* ERROR MESSAGES:
*
* message condition value returned
* ndtril domain x <= 0 -MAXNUML
* ndtril domain x >= 1 MAXNUML
*
*/
/*
Cephes Math Library Release 2.3: January, 1995
Copyright 1984, 1995 by Stephen L. Moshier
*/
#include <math.h>
extern long double MAXNUML;
/* ndtri(y+0.5)/sqrt(2 pi) = y + y^3 R(y^2)
0 <= y <= 3/8
Peak relative error 6.8e-21. */
#if UNK
/* sqrt(2pi) */
static long double s2pi = 2.506628274631000502416E0L;
static long double P0[8] = {
8.779679420055069160496E-3L,
-7.649544967784380691785E-1L,
2.971493676711545292135E0L,
-4.144980036933753828858E0L,
2.765359913000830285937E0L,
-9.570456817794268907847E-1L,
1.659219375097958322098E-1L,
-1.140013969885358273307E-2L,
};
static long double Q0[7] = {
/* 1.000000000000000000000E0L, */
-5.303846964603721860329E0L,
9.908875375256718220854E0L,
-9.031318655459381388888E0L,
4.496118508523213950686E0L,
-1.250016921424819972516E0L,
1.823840725000038842075E-1L,
-1.088633151006419263153E-2L,
};
#endif
#if IBMPC
static unsigned short s2p[] = {
0x2cb3,0xb138,0x98ff,0xa06c,0x4000, XPD
};
#define s2pi *(long double *)s2p
static short P0[] = {
0xb006,0x9fc1,0xa4fe,0x8fd8,0x3ff8, XPD
0x6f8a,0x976e,0x0ed2,0xc3d4,0xbffe, XPD
0xf1f1,0x6fcc,0xf3d0,0xbe2c,0x4000, XPD
0xccfb,0xa681,0xad2c,0x84a3,0xc001, XPD
0x9a0d,0x0082,0xa825,0xb0fb,0x4000, XPD
0x13d1,0x054a,0xf220,0xf500,0xbffe, XPD
0xcee9,0x2c92,0x70bd,0xa9e7,0x3ffc, XPD
0x5fee,0x4a42,0xa6cb,0xbac7,0xbff8, XPD
};
static short Q0[] = {
/* 0x0000,0x0000,0x0000,0x8000,0x3fff, XPD */
0x841e,0xfec7,0x1d44,0xa9b9,0xc001, XPD
0x97e6,0xcde0,0xc0e7,0x9e8a,0x4002, XPD
0x66f9,0x8f3e,0x47fd,0x9080,0xc002, XPD
0x212f,0x2185,0x33ec,0x8fe0,0x4001, XPD
0x8e73,0x7bac,0x8df2,0xa000,0xbfff, XPD
0xc143,0xcb94,0xe3ea,0xbac2,0x3ffc, XPD
0x25d9,0xc8f3,0x9573,0xb25c,0xbff8, XPD
};
#endif
#if MIEEE
static unsigned long s2p[] = {
0x40000000,0xa06c98ff,0xb1382cb3,
};
#define s2pi *(long double *)s2p
static long P0[24] = {
0x3ff80000,0x8fd8a4fe,0x9fc1b006,
0xbffe0000,0xc3d40ed2,0x976e6f8a,
0x40000000,0xbe2cf3d0,0x6fccf1f1,
0xc0010000,0x84a3ad2c,0xa681ccfb,
0x40000000,0xb0fba825,0x00829a0d,
0xbffe0000,0xf500f220,0x054a13d1,
0x3ffc0000,0xa9e770bd,0x2c92cee9,
0xbff80000,0xbac7a6cb,0x4a425fee,
};
static long Q0[21] = {
/* 0x3fff0000,0x80000000,0x00000000, */
0xc0010000,0xa9b91d44,0xfec7841e,
0x40020000,0x9e8ac0e7,0xcde097e6,
0xc0020000,0x908047fd,0x8f3e66f9,
0x40010000,0x8fe033ec,0x2185212f,
0xbfff0000,0xa0008df2,0x7bac8e73,
0x3ffc0000,0xbac2e3ea,0xcb94c143,
0xbff80000,0xb25c9573,0xc8f325d9,
};
#endif
/* Approximation for interval z = sqrt(-2 log y ) between 2 and 8
*/
/* ndtri(p) = z - ln(z)/z - 1/z P1(1/z)/Q1(1/z)
z = sqrt(-2 ln(p))
2 <= z <= 8, i.e., y between exp(-2) = .135 and exp(-32) = 1.27e-14.
Peak relative error 5.3e-21 */
#if UNK
static long double P1[10] = {
4.302849750435552180717E0L,
4.360209451837096682600E1L,
9.454613328844768318162E1L,
9.336735653151873871756E1L,
5.305046472191852391737E1L,
1.775851836288460008093E1L,
3.640308340137013109859E0L,
3.691354900171224122390E-1L,
1.403530274998072987187E-2L,
1.377145111380960566197E-4L,
};
static long double Q1[9] = {
/* 1.000000000000000000000E0L, */
2.001425109170530136741E1L,
7.079893963891488254284E1L,
8.033277265194672063478E1L,
5.034715121553662712917E1L,
1.779820137342627204153E1L,
3.845554944954699547539E0L,
3.993627390181238962857E-1L,
1.526870689522191191380E-2L,
1.498700676286675466900E-4L,
};
#endif
#if IBMPC
static short P1[] = {
0x6105,0xb71e,0xf1f5,0x89b0,0x4001, XPD
0x461d,0x2604,0x8b77,0xae68,0x4004, XPD
0x8b33,0x4a47,0x9ec8,0xbd17,0x4005, XPD
0xa0b2,0xc1b0,0x1627,0xbabc,0x4005, XPD
0x9901,0x28f7,0xad06,0xd433,0x4004, XPD
0xddcb,0x5009,0x7213,0x8e11,0x4003, XPD
0x2432,0x0fa6,0xcfd5,0xe8fa,0x4000, XPD
0x3e24,0xd53c,0x53b2,0xbcff,0x3ffd, XPD
0x4058,0x3d75,0x5393,0xe5f4,0x3ff8, XPD
0x1789,0xf50a,0x7524,0x9067,0x3ff2, XPD
};
static short Q1[] = {
/* 0x0000,0x0000,0x0000,0x8000,0x3fff, XPD */
0xd901,0x2673,0x2fad,0xa01d,0x4003, XPD
0x24f5,0xc93c,0x0e9d,0x8d99,0x4005, XPD
0x8cda,0x523a,0x612d,0xa0aa,0x4005, XPD
0x602c,0xb5fc,0x7b9b,0xc963,0x4004, XPD
0xac72,0xd3e7,0xb766,0x8e62,0x4003, XPD
0x048e,0xe34c,0x927c,0xf61d,0x4000, XPD
0x6d88,0xa5cc,0x45de,0xcc79,0x3ffd, XPD
0xe6d1,0x199a,0x9931,0xfa29,0x3ff8, XPD
0x4c7d,0x3675,0x70a0,0x9d26,0x3ff2, XPD
};
#endif
#if MIEEE
static long P1[30] = {
0x40010000,0x89b0f1f5,0xb71e6105,
0x40040000,0xae688b77,0x2604461d,
0x40050000,0xbd179ec8,0x4a478b33,
0x40050000,0xbabc1627,0xc1b0a0b2,
0x40040000,0xd433ad06,0x28f79901,
0x40030000,0x8e117213,0x5009ddcb,
0x40000000,0xe8facfd5,0x0fa62432,
0x3ffd0000,0xbcff53b2,0xd53c3e24,
0x3ff80000,0xe5f45393,0x3d754058,
0x3ff20000,0x90677524,0xf50a1789,
};
static long Q1[27] = {
/* 0x3fff0000,0x80000000,0x00000000, */
0x40030000,0xa01d2fad,0x2673d901,
0x40050000,0x8d990e9d,0xc93c24f5,
0x40050000,0xa0aa612d,0x523a8cda,
0x40040000,0xc9637b9b,0xb5fc602c,
0x40030000,0x8e62b766,0xd3e7ac72,
0x40000000,0xf61d927c,0xe34c048e,
0x3ffd0000,0xcc7945de,0xa5cc6d88,
0x3ff80000,0xfa299931,0x199ae6d1,
0x3ff20000,0x9d2670a0,0x36754c7d,
};
#endif
/* ndtri(x) = z - ln(z)/z - 1/z P2(1/z)/Q2(1/z)
z = sqrt(-2 ln(y))
8 <= z <= 32
i.e., y between exp(-32) = 1.27e-14 and exp(-512) = 4.38e-223
Peak relative error 1.0e-21 */
#if UNK
static long double P2[8] = {
3.244525725312906932464E0L,
6.856256488128415760904E0L,
3.765479340423144482796E0L,
1.240893301734538935324E0L,
1.740282292791367834724E-1L,
9.082834200993107441750E-3L,
1.617870121822776093899E-4L,
7.377405643054504178605E-7L,
};
static long double Q2[7] = {
/* 1.000000000000000000000E0L, */
6.021509481727510630722E0L,
3.528463857156936773982E0L,
1.289185315656302878699E0L,
1.874290142615703609510E-1L,
9.867655920899636109122E-3L,
1.760452434084258930442E-4L,
8.028288500688538331773E-7L,
};
#endif
#if IBMPC
static short P2[] = {
0xafb1,0x4ff9,0x4f3a,0xcfa6,0x4000, XPD
0xbd81,0xaffa,0x7401,0xdb66,0x4001, XPD
0x3a32,0x3863,0x9d0f,0xf0fd,0x4000, XPD
0x300e,0x633d,0x977a,0x9ed5,0x3fff, XPD
0xea3a,0x56b6,0x74c5,0xb234,0x3ffc, XPD
0x38c6,0x49d2,0x2af6,0x94d0,0x3ff8, XPD
0xc85d,0xe17d,0x5ed1,0xa9a5,0x3ff2, XPD
0x536c,0x808b,0x2542,0xc609,0x3fea, XPD
};
static short Q2[] = {
/* 0x0000,0x0000,0x0000,0x8000,0x3fff, XPD */
0xaabd,0x125a,0x34a7,0xc0b0,0x4001, XPD
0x0ded,0xe6da,0x5a11,0xe1d2,0x4000, XPD
0xc742,0x9d16,0x0640,0xa504,0x3fff, XPD
0xea1e,0x4cc2,0x643a,0xbfed,0x3ffc, XPD
0x7a9b,0xfaff,0xf2dd,0xa1ab,0x3ff8, XPD
0xfd90,0x4688,0xc902,0xb898,0x3ff2, XPD
0xf003,0x032a,0xfa7e,0xd781,0x3fea, XPD
};
#endif
#if MIEEE
static long P2[24] = {
0x40000000,0xcfa64f3a,0x4ff9afb1,
0x40010000,0xdb667401,0xaffabd81,
0x40000000,0xf0fd9d0f,0x38633a32,
0x3fff0000,0x9ed5977a,0x633d300e,
0x3ffc0000,0xb23474c5,0x56b6ea3a,
0x3ff80000,0x94d02af6,0x49d238c6,
0x3ff20000,0xa9a55ed1,0xe17dc85d,
0x3fea0000,0xc6092542,0x808b536c,
};
static long Q2[21] = {
/* 0x3fff0000,0x80000000,0x00000000, */
0x40010000,0xc0b034a7,0x125aaabd,
0x40000000,0xe1d25a11,0xe6da0ded,
0x3fff0000,0xa5040640,0x9d16c742,
0x3ffc0000,0xbfed643a,0x4cc2ea1e,
0x3ff80000,0xa1abf2dd,0xfaff7a9b,
0x3ff20000,0xb898c902,0x4688fd90,
0x3fea0000,0xd781fa7e,0x032af003,
};
#endif
/* ndtri(x) = z - ln(z)/z - 1/z P3(1/z)/Q3(1/z)
32 < z < 2048/13
Peak relative error 1.4e-20 */
#if UNK
static long double P3[8] = {
2.020331091302772535752E0L,
2.133020661587413053144E0L,
2.114822217898707063183E-1L,
-6.500909615246067985872E-3L,
-7.279315200737344309241E-4L,
-1.275404675610280787619E-5L,
-6.433966387613344714022E-8L,
-7.772828380948163386917E-11L,
};
static long double Q3[7] = {
/* 1.000000000000000000000E0L, */
2.278210997153449199574E0L,
2.345321838870438196534E-1L,
-6.916708899719964982855E-3L,
-7.908542088737858288849E-4L,
-1.387652389480217178984E-5L,
-7.001476867559193780666E-8L,
-8.458494263787680376729E-11L,
};
#endif
#if IBMPC
static short P3[] = {
0x87b2,0x0f31,0x1ac7,0x814d,0x4000, XPD
0x491c,0xcd74,0x6917,0x8883,0x4000, XPD
0x935e,0x1776,0xcba9,0xd88e,0x3ffc, XPD
0xbafd,0x8abb,0x9518,0xd505,0xbff7, XPD
0xc87e,0x2ed3,0xa84a,0xbed2,0xbff4, XPD
0x0094,0xa402,0x36b5,0xd5fa,0xbfee, XPD
0xbc53,0x0fc3,0x1ab2,0x8a2b,0xbfe7, XPD
0x30b4,0x71c0,0x223d,0xaaed,0xbfdd, XPD
};
static short Q3[] = {
/* 0x0000,0x0000,0x0000,0x8000,0x3fff, XPD */
0xdfc1,0x8a57,0x357f,0x91ce,0x4000, XPD
0xcc4f,0x9e03,0x346e,0xf029,0x3ffc, XPD
0x38b1,0x9788,0x8f42,0xe2a5,0xbff7, XPD
0xb281,0x2117,0x53da,0xcf51,0xbff4, XPD
0xf2ab,0x1d42,0x3760,0xe8cf,0xbfee, XPD
0x741b,0xf14f,0x06b0,0x965b,0xbfe7, XPD
0x37c2,0xa91f,0x16ea,0xba01,0xbfdd, XPD
};
#endif
#if MIEEE
static long P3[24] = {
0x40000000,0x814d1ac7,0x0f3187b2,
0x40000000,0x88836917,0xcd74491c,
0x3ffc0000,0xd88ecba9,0x1776935e,
0xbff70000,0xd5059518,0x8abbbafd,
0xbff40000,0xbed2a84a,0x2ed3c87e,
0xbfee0000,0xd5fa36b5,0xa4020094,
0xbfe70000,0x8a2b1ab2,0x0fc3bc53,
0xbfdd0000,0xaaed223d,0x71c030b4,
};
static long Q3[21] = {
/* 0x3fff0000,0x80000000,0x00000000, */
0x40000000,0x91ce357f,0x8a57dfc1,
0x3ffc0000,0xf029346e,0x9e03cc4f,
0xbff70000,0xe2a58f42,0x978838b1,
0xbff40000,0xcf5153da,0x2117b281,
0xbfee0000,0xe8cf3760,0x1d42f2ab,
0xbfe70000,0x965b06b0,0xf14f741b,
0xbfdd0000,0xba0116ea,0xa91f37c2,
};
#endif
#ifdef ANSIPROT
extern long double polevll ( long double, void *, int );
extern long double p1evll ( long double, void *, int );
extern long double logl ( long double );
extern long double sqrtl ( long double );
#else
long double polevll(), p1evll(), logl(), sqrtl();
#endif
long double ndtril(y0)
long double y0;
{
long double x, y, z, y2, x0, x1;
int code;
if( y0 <= 0.0L )
{
mtherr( "ndtril", DOMAIN );
return( -MAXNUML );
}
if( y0 >= 1.0L )
{
mtherr( "ndtri", DOMAIN );
return( MAXNUML );
}
code = 1;
y = y0;
if( y > (1.0L - 0.13533528323661269189L) ) /* 0.135... = exp(-2) */
{
y = 1.0L - y;
code = 0;
}
if( y > 0.13533528323661269189L )
{
y = y - 0.5L;
y2 = y * y;
x = y + y * (y2 * polevll( y2, P0, 7 )/p1evll( y2, Q0, 7 ));
x = x * s2pi;
return(x);
}
x = sqrtl( -2.0L * logl(y) );
x0 = x - logl(x)/x;
z = 1.0L/x;
if( x < 8.0L )
x1 = z * polevll( z, P1, 9 )/p1evll( z, Q1, 9 );
else if( x < 32.0L )
x1 = z * polevll( z, P2, 7 )/p1evll( z, Q2, 7 );
else
x1 = z * polevll( z, P3, 7 )/p1evll( z, Q3, 7 );
x = x0 - x1;
if( code != 0 )
x = -x;
return( x );
}
|