1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
|
/* mtst.c
Consistency tests for math functions.
With NTRIALS=10000, the following are typical results for
an alleged IEEE long double precision arithmetic:
Consistency test of math functions.
Max and rms errors for 10000 random arguments.
A = absolute error criterion (but relative if >1):
Otherwise, estimate is of relative error
x = cbrt( cube(x) ): max = 7.65E-20 rms = 4.39E-21
x = atan( tan(x) ): max = 2.01E-19 rms = 3.96E-20
x = sin( asin(x) ): max = 2.15E-19 rms = 3.00E-20
x = sqrt( square(x) ): max = 0.00E+00 rms = 0.00E+00
x = log( exp(x) ): max = 5.42E-20 A rms = 1.87E-21 A
x = log2( exp2(x) ): max = 1.08E-19 A rms = 3.37E-21 A
x = log10( exp10(x) ): max = 2.71E-20 A rms = 6.76E-22 A
x = acosh( cosh(x) ): max = 3.13E-18 A rms = 3.21E-20 A
x = pow( pow(x,a),1/a ): max = 1.25E-17 rms = 1.70E-19
x = tanh( atanh(x) ): max = 1.08E-19 rms = 1.16E-20
x = asinh( sinh(x) ): max = 1.03E-19 rms = 2.94E-21
x = cos( acos(x) ): max = 1.63E-19 A rms = 4.37E-20 A
lgam(x) = log(gamma(x)): max = 2.31E-19 A rms = 5.93E-20 A
x = ndtri( ndtr(x) ): max = 5.07E-17 rms = 7.03E-19
Legendre ellpk, ellpe: max = 7.59E-19 A rms = 1.72E-19 A
Absolute error and only 2000 trials:
Wronksian of Yn, Jn: max = 6.40E-18 A rms = 1.49E-19 A
Relative error and only 100 trials:
x = stdtri(stdtr(k,x) ): max = 6.73E-19 rms = 2.46E-19
*/
/*
Cephes Math Library Release 2.3: November, 1995
Copyright 1984, 1987, 1988, 1995 by Stephen L. Moshier
*/
#include <math.h>
/* C9X spells lgam lgamma. */
#define GLIBC2 0
#define NTRIALS 10000
#define WTRIALS (NTRIALS/5)
#define STRTST 0
/* Note, fabsl may be an intrinsic function. */
#ifdef ANSIPROT
extern long double fabsl ( long double );
extern long double sqrtl ( long double );
extern long double cbrtl ( long double );
extern long double expl ( long double );
extern long double logl ( long double );
extern long double tanl ( long double );
extern long double atanl ( long double );
extern long double sinl ( long double );
extern long double asinl ( long double );
extern long double cosl ( long double );
extern long double acosl ( long double );
extern long double powl ( long double, long double );
extern long double tanhl ( long double );
extern long double atanhl ( long double );
extern long double sinhl ( long double );
extern long double asinhl ( long double );
extern long double coshl ( long double );
extern long double acoshl ( long double );
extern long double exp2l ( long double );
extern long double log2l ( long double );
extern long double exp10l ( long double );
extern long double log10l ( long double );
extern long double gammal ( long double );
extern long double lgaml ( long double );
extern long double jnl ( int, long double );
extern long double ynl ( int, long double );
extern long double ndtrl ( long double );
extern long double ndtril ( long double );
extern long double stdtrl ( int, long double );
extern long double stdtril ( int, long double );
extern long double ellpel ( long double );
extern long double ellpkl ( long double );
extern void exit (int);
#else
long double fabsl(), sqrtl();
long double cbrtl(), expl(), logl(), tanl(), atanl();
long double sinl(), asinl(), cosl(), acosl(), powl();
long double tanhl(), atanhl(), sinhl(), asinhl(), coshl(), acoshl();
long double exp2l(), log2l(), exp10l(), log10l();
long double gammal(), lgaml(), jnl(), ynl(), ndtrl(), ndtril();
long double stdtrl(), stdtril(), ellpel(), ellpkl();
void exit ();
#endif
extern int merror;
#if GLIBC2
long double lgammal(long double);
#endif
/*
NYI:
double iv(), kn();
*/
/* Provide inverses for square root and cube root: */
long double squarel(x)
long double x;
{
return( x * x );
}
long double cubel(x)
long double x;
{
return( x * x * x );
}
/* lookup table for each function */
struct fundef
{
char *nam1; /* the function */
long double (*name )();
char *nam2; /* its inverse */
long double (*inv )();
int nargs; /* number of function arguments */
int tstyp; /* type code of the function */
long ctrl; /* relative error flag */
long double arg1w; /* width of domain for 1st arg */
long double arg1l; /* lower bound domain 1st arg */
long arg1f; /* flags, e.g. integer arg */
long double arg2w; /* same info for args 2, 3, 4 */
long double arg2l;
long arg2f;
/*
double arg3w;
double arg3l;
long arg3f;
double arg4w;
double arg4l;
long arg4f;
*/
};
/* fundef.ctrl bits: */
#define RELERR 1
#define EXPSCAL 4
/* fundef.tstyp test types: */
#define POWER 1
#define ELLIP 2
#define GAMMA 3
#define WRONK1 4
#define WRONK2 5
#define WRONK3 6
#define STDTR 7
/* fundef.argNf argument flag bits: */
#define INT 2
extern long double MINLOGL;
extern long double MAXLOGL;
extern long double PIL;
extern long double PIO2L;
/*
define MINLOG -170.0
define MAXLOG +170.0
define PI 3.14159265358979323846
define PIO2 1.570796326794896619
*/
#define NTESTS 17
struct fundef defs[NTESTS] = {
{" cube", cubel, " cbrt", cbrtl, 1, 0, 1, 2000.0L, -1000.0L, 0,
0.0, 0.0, 0},
{" tan", tanl, " atan", atanl, 1, 0, 1, 0.0L, 0.0L, 0,
0.0, 0.0, 0},
{" asin", asinl, " sin", sinl, 1, 0, 1, 2.0L, -1.0L, 0,
0.0, 0.0, 0},
{"square", squarel, " sqrt", sqrtl, 1, 0, 1, 170.0L, -85.0L, EXPSCAL,
0.0, 0.0, 0},
{" exp", expl, " log", logl, 1, 0, 0, 340.0L, -170.0L, 0,
0.0, 0.0, 0},
{" exp2", exp2l, " log2", log2l, 1, 0, 0, 340.0L, -170.0L, 0,
0.0, 0.0, 0},
{" exp10", exp10l, " log10", log10l, 1, 0, 0, 340.0L, -170.0L, 0,
0.0, 0.0, 0},
{" cosh", coshl, " acosh", acoshl, 1, 0, 0, 340.0L, 0.0L, 0,
0.0, 0.0, 0},
{"pow", powl, "pow", powl, 2, POWER, 1, 25.0L, 0.0L, 0,
50.0, -25.0, 0},
{" atanh", atanhl, " tanh", tanhl, 1, 0, 1, 2.0L, -1.0L, 0,
0.0, 0.0, 0},
{" sinh", sinhl, " asinh", asinhl, 1, 0, 1, 340.0L, 0.0L, 0,
0.0, 0.0, 0},
{" acos", acosl, " cos", cosl, 1, 0, 0, 2.0L, -1.0L, 0,
0.0, 0.0, 0},
#if GLIBC2
/*
{ "gamma", gammal, "lgammal", lgammal, 1, GAMMA, 0, 34.0, 0.0, 0,
0.0, 0.0, 0},
*/
#else
{ "gamma", gammal, "lgam", lgaml, 1, GAMMA, 0, 34.0, 0.0, 0,
0.0, 0.0, 0},
{ " ndtr", ndtrl, " ndtri", ndtril, 1, 0, 1, 10.0L, -10.0L, 0,
0.0, 0.0, 0},
{" ellpe", ellpel, " ellpk", ellpkl, 1, ELLIP, 0, 1.0L, 0.0L, 0,
0.0, 0.0, 0},
{ "stdtr", stdtrl, "stdtri", stdtril, 2, STDTR, 1, 4.0L, -2.0L, 0,
30.0, 1.0, INT},
{ " Jn", jnl, " Yn", ynl, 2, WRONK1, 0, 30.0, 0.1, 0,
40.0, -20.0, INT},
#endif
};
static char *headrs[] = {
"x = %s( %s(x) ): ",
"x = %s( %s(x,a),1/a ): ", /* power */
"Legendre %s, %s: ", /* ellip */
"%s(x) = log(%s(x)): ", /* gamma */
"Wronksian of %s, %s: ", /* wronk1 */
"Wronksian of %s, %s: ", /* wronk2 */
"Wronksian of %s, %s: ", /* wronk3 */
"x = %s(%s(k,x) ): ", /* stdtr */
};
static long double y1 = 0.0;
static long double y2 = 0.0;
static long double y3 = 0.0;
static long double y4 = 0.0;
static long double a = 0.0;
static long double x = 0.0;
static long double y = 0.0;
static long double z = 0.0;
static long double e = 0.0;
static long double max = 0.0;
static long double rmsa = 0.0;
static long double rms = 0.0;
static long double ave = 0.0;
static double da, db, dc, dd;
int ldrand();
int printf();
int
main()
{
long double (*fun )();
long double (*ifun )();
struct fundef *d;
int i, k, itst;
int m, ntr;
ntr = NTRIALS;
printf( "Consistency test of math functions.\n" );
printf( "Max and rms errors for %d random arguments.\n",
ntr );
printf( "A = absolute error criterion (but relative if >1):\n" );
printf( "Otherwise, estimate is of relative error\n" );
/* Initialize machine dependent parameters to test near the
* largest an smallest possible arguments. To compare different
* machines, use the same test intervals for all systems.
*/
defs[1].arg1w = PIL;
defs[1].arg1l = -PIL/2.0;
/*
defs[3].arg1w = MAXLOGL;
defs[3].arg1l = -MAXLOGL/2.0;
defs[4].arg1w = 2.0*MAXLOGL;
defs[4].arg1l = -MAXLOGL;
defs[6].arg1w = 2.0*MAXLOGL;
defs[6].arg1l = -MAXLOGL;
defs[7].arg1w = MAXLOGL;
defs[7].arg1l = 0.0;
*/
/* Outer loop, on the test number: */
for( itst=STRTST; itst<NTESTS; itst++ )
{
d = &defs[itst];
m = 0;
max = 0.0L;
rmsa = 0.0L;
ave = 0.0L;
fun = d->name;
ifun = d->inv;
/* Smaller number of trials for Wronksians
* (put them at end of list)
*/
if( d->tstyp == WRONK1 )
{
ntr = WTRIALS;
printf( "Absolute error and only %d trials:\n", ntr );
}
else if( d->tstyp == STDTR )
{
ntr = NTRIALS/100;
printf( "Relative error and only %d trials:\n", ntr );
}
/*
y1 = d->arg1l;
y2 = d->arg1w;
da = y1;
db = y2;
printf( "arg1l = %.4e, arg1w = %.4e\n", da, db );
*/
printf( headrs[d->tstyp], d->nam2, d->nam1 );
for( i=0; i<ntr; i++ )
{
m++;
k = 0;
/* make random number(s) in desired range(s) */
switch( d->nargs )
{
default:
goto illegn;
case 2:
ldrand( &a );
a = d->arg2w * ( a - 1.0L ) + d->arg2l;
if( d->arg2f & EXPSCAL )
{
a = expl(a);
ldrand( &y2 );
a -= 1.0e-13L * a * (y2 - 1.0L);
}
if( d->arg2f & INT )
{
k = a + 0.25L;
a = k;
}
case 1:
ldrand( &x );
y1 = d->arg1l;
y2 = d->arg1w;
x = y2 * ( x - 1.0L ) + y1;
if( x < y1 )
x = y1;
y1 += y2;
if( x > y1 )
x = y1;
if( d->arg1f & EXPSCAL )
{
x = expl(x);
ldrand( &y2 );
x += 1.0e-13L * x * (y2 - 1.0L);
}
}
/* compute function under test */
switch( d->nargs )
{
case 1:
switch( d->tstyp )
{
case ELLIP:
y1 = ( *(fun) )(x);
y2 = ( *(fun) )(1.0L-x);
y3 = ( *(ifun) )(x);
y4 = ( *(ifun) )(1.0L-x);
break;
#if 1
case GAMMA:
y = lgaml(x);
x = logl( gammal(x) );
break;
#endif
default:
z = ( *(fun) )(x);
y = ( *(ifun) )(z);
}
/*
if( merror )
{
printf( "error: x = %.15e, z = %.15e, y = %.15e\n",
(double )x, (double )z, (double )y );
}
*/
break;
case 2:
if( d->arg2f & INT )
{
switch( d->tstyp )
{
case WRONK1:
y1 = (*fun)( k, x ); /* jn */
y2 = (*fun)( k+1, x );
y3 = (*ifun)( k, x ); /* yn */
y4 = (*ifun)( k+1, x );
break;
case WRONK2:
y1 = (*fun)( a, x ); /* iv */
y2 = (*fun)( a+1.0L, x );
y3 = (*ifun)( k, x ); /* kn */
y4 = (*ifun)( k+1, x );
break;
default:
z = (*fun)( k, x );
y = (*ifun)( k, z );
}
}
else
{
if( d->tstyp == POWER )
{
z = (*fun)( x, a );
y = (*ifun)( z, 1.0L/a );
}
else
{
z = (*fun)( a, x );
y = (*ifun)( a, z );
}
}
break;
default:
illegn:
printf( "Illegal nargs= %d", d->nargs );
exit(1);
}
switch( d->tstyp )
{
case WRONK1:
/* Jn, Yn */
/* e = (y2*y3 - y1*y4) - 2.0L/(PIL*x);*/
e = x*(y2*y3 - y1*y4) - 2.0L/PIL;
break;
case WRONK2:
/* In, Kn */
/* e = (y2*y3 + y1*y4) - 1.0L/x; */
e = x*(y2*y3 + y1*y4) - 1.0L;
break;
case ELLIP:
e = (y1-y3)*y4 + y3*y2 - PIO2L;
break;
default:
e = y - x;
break;
}
if( d->ctrl & RELERR )
{
if( x != 0.0L )
e /= x;
else
printf( "warning, x == 0\n" );
}
else
{
if( fabsl(x) > 1.0L )
e /= x;
}
ave += e;
/* absolute value of error */
if( e < 0 )
e = -e;
/* peak detect the error */
if( e > max )
{
max = e;
if( e > 1.0e-10L )
{
da = x;
db = z;
dc = y;
dd = max;
printf("x %.6E z %.6E y %.6E max %.4E\n",
da, db, dc, dd );
/*
if( d->tstyp >= WRONK1 )
{
printf( "y1 %.4E y2 %.4E y3 %.4E y4 %.4E k %d x %.4E\n",
(double )y1, (double )y2, (double )y3,
(double )y4, k, (double )x );
}
*/
}
/*
printf("%.8E %.8E %.4E %6ld \n", x, y, max, n);
printf("%d %.8E %.8E %.4E %6ld \n", k, x, y, max, n);
printf("%.6E %.6E %.6E %.4E %6ld \n", a, x, y, max, n);
printf("%.6E %.6E %.6E %.6E %.4E %6ld \n", a, b, x, y, max, n);
printf("%.4E %.4E %.4E %.4E %.4E %.4E %6ld \n",
a, b, c, x, y, max, n);
*/
}
/* accumulate rms error */
e *= 1.0e16L; /* adjust range */
rmsa += e * e; /* accumulate the square of the error */
}
/* report after NTRIALS trials */
rms = 1.0e-16L * sqrtl( rmsa/m );
da = max;
db = rms;
if(d->ctrl & RELERR)
printf(" max = %.2E rms = %.2E\n", da, db );
else
printf(" max = %.2E A rms = %.2E A\n", da, db );
} /* loop on itst */
exit (0);
return 0;
}
|