1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
|
/* igaml.c
*
* Incomplete gamma integral
*
*
*
* SYNOPSIS:
*
* long double a, x, y, igaml();
*
* y = igaml( a, x );
*
*
*
* DESCRIPTION:
*
* The function is defined by
*
* x
* -
* 1 | | -t a-1
* igam(a,x) = ----- | e t dt.
* - | |
* | (a) -
* 0
*
*
* In this implementation both arguments must be positive.
* The integral is evaluated by either a power series or
* continued fraction expansion, depending on the relative
* values of a and x.
*
*
*
* ACCURACY:
*
* Relative error:
* arithmetic domain # trials peak rms
* DEC 0,30 4000 4.4e-15 6.3e-16
* IEEE 0,30 10000 3.6e-14 5.1e-15
*
*/
/* igamcl()
*
* Complemented incomplete gamma integral
*
*
*
* SYNOPSIS:
*
* long double a, x, y, igamcl();
*
* y = igamcl( a, x );
*
*
*
* DESCRIPTION:
*
* The function is defined by
*
*
* igamc(a,x) = 1 - igam(a,x)
*
* inf.
* -
* 1 | | -t a-1
* = ----- | e t dt.
* - | |
* | (a) -
* x
*
*
* In this implementation both arguments must be positive.
* The integral is evaluated by either a power series or
* continued fraction expansion, depending on the relative
* values of a and x.
*
*
*
* ACCURACY:
*
* Relative error:
* arithmetic domain # trials peak rms
* DEC 0,30 2000 2.7e-15 4.0e-16
* IEEE 0,30 60000 1.4e-12 6.3e-15
*
*/
/*
Cephes Math Library Release 2.3: March, 1995
Copyright 1985, 1995 by Stephen L. Moshier
*/
#include <math.h>
#ifdef ANSIPROT
extern long double lgaml ( long double );
extern long double expl ( long double );
extern long double logl ( long double );
extern long double fabsl ( long double );
extern long double gammal ( long double );
long double igaml ( long double, long double );
long double igamcl ( long double, long double );
#else
long double lgaml(), expl(), logl(), fabsl(), igaml(), gammal();
long double igamcl();
#endif
#define BIG 9.223372036854775808e18L
#define MAXGAML 1755.455L
extern long double MACHEPL, MINLOGL;
long double igamcl( a, x )
long double a, x;
{
long double ans, c, yc, ax, y, z, r, t;
long double pk, pkm1, pkm2, qk, qkm1, qkm2;
if( (x <= 0.0L) || ( a <= 0.0L) )
return( 1.0L );
if( (x < 1.0L) || (x < a) )
return( 1.0L - igaml(a,x) );
ax = a * logl(x) - x - lgaml(a);
if( ax < MINLOGL )
{
mtherr( "igamcl", UNDERFLOW );
return( 0.0L );
}
ax = expl(ax);
/* continued fraction */
y = 1.0L - a;
z = x + y + 1.0L;
c = 0.0L;
pkm2 = 1.0L;
qkm2 = x;
pkm1 = x + 1.0L;
qkm1 = z * x;
ans = pkm1/qkm1;
do
{
c += 1.0L;
y += 1.0L;
z += 2.0L;
yc = y * c;
pk = pkm1 * z - pkm2 * yc;
qk = qkm1 * z - qkm2 * yc;
if( qk != 0.0L )
{
r = pk/qk;
t = fabsl( (ans - r)/r );
ans = r;
}
else
t = 1.0L;
pkm2 = pkm1;
pkm1 = pk;
qkm2 = qkm1;
qkm1 = qk;
if( fabsl(pk) > BIG )
{
pkm2 /= BIG;
pkm1 /= BIG;
qkm2 /= BIG;
qkm1 /= BIG;
}
}
while( t > MACHEPL );
return( ans * ax );
}
/* left tail of incomplete gamma function:
*
* inf. k
* a -x - x
* x e > ----------
* - -
* k=0 | (a+k+1)
*
*/
long double igaml( a, x )
long double a, x;
{
long double ans, ax, c, r;
if( (x <= 0.0L) || ( a <= 0.0L) )
return( 0.0L );
if( (x > 1.0L) && (x > a ) )
return( 1.0L - igamcl(a,x) );
ax = a * logl(x) - x - lgaml(a);
if( ax < MINLOGL )
{
mtherr( "igaml", UNDERFLOW );
return( 0.0L );
}
ax = expl(ax);
/* power series */
r = a;
c = 1.0L;
ans = 1.0L;
do
{
r += 1.0L;
c *= x/r;
ans += c;
}
while( c/ans > MACHEPL );
return( ans * ax/a );
}
|