summaryrefslogtreecommitdiff
path: root/libm/ldouble/cbrtl.c
blob: 89ed11a06199b055ce4f3d670f0568bc5af1fe9a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
/*							cbrtl.c
 *
 *	Cube root, long double precision
 *
 *
 *
 * SYNOPSIS:
 *
 * long double x, y, cbrtl();
 *
 * y = cbrtl( x );
 *
 *
 *
 * DESCRIPTION:
 *
 * Returns the cube root of the argument, which may be negative.
 *
 * Range reduction involves determining the power of 2 of
 * the argument.  A polynomial of degree 2 applied to the
 * mantissa, and multiplication by the cube root of 1, 2, or 4
 * approximates the root to within about 0.1%.  Then Newton's
 * iteration is used three times to converge to an accurate
 * result.
 *
 *
 *
 * ACCURACY:
 *
 *                      Relative error:
 * arithmetic   domain     # trials      peak         rms
 *    IEEE     .125,8        80000      7.0e-20     2.2e-20
 *    IEEE    exp(+-707)    100000      7.0e-20     2.4e-20
 *
 */


/*
Cephes Math Library Release 2.2: January, 1991
Copyright 1984, 1991 by Stephen L. Moshier
Direct inquiries to 30 Frost Street, Cambridge, MA 02140
*/


#include <math.h>

static long double CBRT2  = 1.2599210498948731647672L;
static long double CBRT4  = 1.5874010519681994747517L;
static long double CBRT2I = 0.79370052598409973737585L;
static long double CBRT4I = 0.62996052494743658238361L;

#ifdef ANSIPROT
extern long double frexpl ( long double, int * );
extern long double ldexpl ( long double, int );
extern int isnanl ( long double );
#else
long double frexpl(), ldexpl();
extern int isnanl();
#endif

#ifdef INFINITIES
extern long double INFINITYL;
#endif

long double cbrtl(x)
long double x;
{
int e, rem, sign;
long double z;


#ifdef NANS
if(isnanl(x))
	return(x);
#endif
#ifdef INFINITIES
if( x == INFINITYL)
	return(x);
if( x == -INFINITYL)
	return(x);
#endif
if( x == 0 )
	return( x );
if( x > 0 )
	sign = 1;
else
	{
	sign = -1;
	x = -x;
	}

z = x;
/* extract power of 2, leaving
 * mantissa between 0.5 and 1
 */
x = frexpl( x, &e );

/* Approximate cube root of number between .5 and 1,
 * peak relative error = 1.2e-6
 */
x = (((( 1.3584464340920900529734e-1L * x
       - 6.3986917220457538402318e-1L) * x
       + 1.2875551670318751538055e0L) * x
       - 1.4897083391357284957891e0L) * x
       + 1.3304961236013647092521e0L) * x
       + 3.7568280825958912391243e-1L;

/* exponent divided by 3 */
if( e >= 0 )
	{
	rem = e;
	e /= 3;
	rem -= 3*e;
	if( rem == 1 )
		x *= CBRT2;
	else if( rem == 2 )
		x *= CBRT4;
	}
else
	{ /* argument less than 1 */
	e = -e;
	rem = e;
	e /= 3;
	rem -= 3*e;
	if( rem == 1 )
		x *= CBRT2I;
	else if( rem == 2 )
		x *= CBRT4I;
	e = -e;
	}

/* multiply by power of 2 */
x = ldexpl( x, e );

/* Newton iteration */

x -= ( x - (z/(x*x)) )*0.3333333333333333333333L;
x -= ( x - (z/(x*x)) )*0.3333333333333333333333L;

if( sign < 0 )
	x = -x;
return(x);
}