1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
|
/* acoshl.c
*
* Inverse hyperbolic cosine, long double precision
*
*
*
* SYNOPSIS:
*
* long double x, y, acoshl();
*
* y = acoshl( x );
*
*
*
* DESCRIPTION:
*
* Returns inverse hyperbolic cosine of argument.
*
* If 1 <= x < 1.5, a rational approximation
*
* sqrt(2z) * P(z)/Q(z)
*
* where z = x-1, is used. Otherwise,
*
* acosh(x) = log( x + sqrt( (x-1)(x+1) ).
*
*
*
* ACCURACY:
*
* Relative error:
* arithmetic domain # trials peak rms
* IEEE 1,3 30000 2.0e-19 3.9e-20
*
*
* ERROR MESSAGES:
*
* message condition value returned
* acoshl domain |x| < 1 0.0
*
*/
/* acosh.c */
/*
Cephes Math Library Release 2.7: May, 1998
Copyright 1984, 1991, 1998 by Stephen L. Moshier
*/
/* acosh(1+x) = sqrt(2x) * R(x), interval 0 < x < 0.5 */
#include <math.h>
#ifdef UNK
static long double P[] = {
2.9071989653343333587238E-5L,
3.2906030801088967279449E-3L,
6.3034445964862182128388E-2L,
4.1587081802731351459504E-1L,
1.0989714347599256302467E0L,
9.9999999999999999999715E-1L,
};
static long double Q[] = {
1.0443462486787584738322E-4L,
6.0085845375571145826908E-3L,
8.7750439986662958343370E-2L,
4.9564621536841869854584E-1L,
1.1823047680932589605190E0L,
1.0000000000000000000028E0L,
};
#endif
#ifdef IBMPC
static unsigned short P[] = {
0x4536,0x4dba,0x9f55,0xf3df,0x3fef, XPD
0x23a5,0xf9aa,0x289c,0xd7a7,0x3ff6, XPD
0x7e8b,0x8645,0x341f,0x8118,0x3ffb, XPD
0x0fd5,0x937f,0x0515,0xd4ed,0x3ffd, XPD
0x2364,0xc41b,0x1891,0x8cab,0x3fff, XPD
0x0000,0x0000,0x0000,0x8000,0x3fff, XPD
};
static short Q[] = {
0x1e7c,0x4f16,0xe98c,0xdb03,0x3ff1, XPD
0xc319,0xc272,0xa90a,0xc4e3,0x3ff7, XPD
0x2f83,0x9e5e,0x80af,0xb3b6,0x3ffb, XPD
0xe1e0,0xc97c,0x573a,0xfdc5,0x3ffd, XPD
0xcdf2,0x6ec5,0xc33c,0x9755,0x3fff, XPD
0x0000,0x0000,0x0000,0x8000,0x3fff, XPD
};
#endif
#ifdef MIEEE
static long P[] = {
0x3fef0000,0xf3df9f55,0x4dba4536,
0x3ff60000,0xd7a7289c,0xf9aa23a5,
0x3ffb0000,0x8118341f,0x86457e8b,
0x3ffd0000,0xd4ed0515,0x937f0fd5,
0x3fff0000,0x8cab1891,0xc41b2364,
0x3fff0000,0x80000000,0x00000000,
};
static long Q[] = {
0x3ff10000,0xdb03e98c,0x4f161e7c,
0x3ff70000,0xc4e3a90a,0xc272c319,
0x3ffb0000,0xb3b680af,0x9e5e2f83,
0x3ffd0000,0xfdc5573a,0xc97ce1e0,
0x3fff0000,0x9755c33c,0x6ec5cdf2,
0x3fff0000,0x80000000,0x00000000,
};
#endif
extern long double LOGE2L;
#ifdef INFINITIES
extern long double INFINITYL;
#endif
#ifdef NANS
extern long double NANL;
#endif
#ifdef ANSIPROT
extern long double logl ( long double );
extern long double sqrtl ( long double );
extern long double polevll ( long double, void *, int );
extern int isnanl ( long double );
#else
long double logl(), sqrtl(), polevll(), isnanl();
#endif
long double acoshl(x)
long double x;
{
long double a, z;
#ifdef NANS
if( isnanl(x) )
return(x);
#endif
if( x < 1.0L )
{
mtherr( "acoshl", DOMAIN );
#ifdef NANS
return(NANL);
#else
return(0.0L);
#endif
}
if( x > 1.0e10 )
{
#ifdef INFINITIES
if( x == INFINITYL )
return( INFINITYL );
#endif
return( logl(x) + LOGE2L );
}
z = x - 1.0L;
if( z < 0.5L )
{
a = sqrtl(2.0L*z) * (polevll(z, P, 5) / polevll(z, Q, 5) );
return( a );
}
a = sqrtl( z*(x+1.0L) );
return( logl(x + a) );
}
|