1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
|
/* zetaf.c
*
* Riemann zeta function of two arguments
*
*
*
* SYNOPSIS:
*
* float x, q, y, zetaf();
*
* y = zetaf( x, q );
*
*
*
* DESCRIPTION:
*
*
*
* inf.
* - -x
* zeta(x,q) = > (k+q)
* -
* k=0
*
* where x > 1 and q is not a negative integer or zero.
* The Euler-Maclaurin summation formula is used to obtain
* the expansion
*
* n
* - -x
* zeta(x,q) = > (k+q)
* -
* k=1
*
* 1-x inf. B x(x+1)...(x+2j)
* (n+q) 1 - 2j
* + --------- - ------- + > --------------------
* x-1 x - x+2j+1
* 2(n+q) j=1 (2j)! (n+q)
*
* where the B2j are Bernoulli numbers. Note that (see zetac.c)
* zeta(x,1) = zetac(x) + 1.
*
*
*
* ACCURACY:
*
* Relative error:
* arithmetic domain # trials peak rms
* IEEE 0,25 10000 6.9e-7 1.0e-7
*
* Large arguments may produce underflow in powf(), in which
* case the results are inaccurate.
*
* REFERENCE:
*
* Gradshteyn, I. S., and I. M. Ryzhik, Tables of Integrals,
* Series, and Products, p. 1073; Academic Press, 1980.
*
*/
/*
Cephes Math Library Release 2.2: July, 1992
Copyright 1984, 1987, 1992 by Stephen L. Moshier
Direct inquiries to 30 Frost Street, Cambridge, MA 02140
*/
#include <math.h>
extern float MAXNUMF, MACHEPF;
/* Expansion coefficients
* for Euler-Maclaurin summation formula
* (2k)! / B2k
* where B2k are Bernoulli numbers
*/
static float A[] = {
12.0,
-720.0,
30240.0,
-1209600.0,
47900160.0,
-1.8924375803183791606e9, /*1.307674368e12/691*/
7.47242496e10,
-2.950130727918164224e12, /*1.067062284288e16/3617*/
1.1646782814350067249e14, /*5.109094217170944e18/43867*/
-4.5979787224074726105e15, /*8.028576626982912e20/174611*/
1.8152105401943546773e17, /*1.5511210043330985984e23/854513*/
-7.1661652561756670113e18 /*1.6938241367317436694528e27/236364091*/
};
/* 30 Nov 86 -- error in third coefficient fixed */
#define fabsf(x) ( (x) < 0 ? -(x) : (x) )
float powf( float, float );
float zetaf(float xx, float qq)
{
int i;
float x, q, a, b, k, s, w, t;
x = xx;
q = qq;
if( x == 1.0 )
return( MAXNUMF );
if( x < 1.0 )
{
mtherr( "zetaf", DOMAIN );
return(0.0);
}
/* Euler-Maclaurin summation formula */
/*
if( x < 25.0 )
{
*/
w = 9.0;
s = powf( q, -x );
a = q;
for( i=0; i<9; i++ )
{
a += 1.0;
b = powf( a, -x );
s += b;
if( b/s < MACHEPF )
goto done;
}
w = a;
s += b*w/(x-1.0);
s -= 0.5 * b;
a = 1.0;
k = 0.0;
for( i=0; i<12; i++ )
{
a *= x + k;
b /= w;
t = a*b/A[i];
s = s + t;
t = fabsf(t/s);
if( t < MACHEPF )
goto done;
k += 1.0;
a *= x + k;
b /= w;
k += 1.0;
}
done:
return(s);
/*
}
*/
/* Basic sum of inverse powers */
/*
pseres:
s = powf( q, -x );
a = q;
do
{
a += 2.0;
b = powf( a, -x );
s += b;
}
while( b/s > MACHEPF );
b = powf( 2.0, -x );
s = (s + b)/(1.0-b);
return(s);
*/
}
|