1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
|
/* zetacf.c
*
* Riemann zeta function
*
*
*
* SYNOPSIS:
*
* float x, y, zetacf();
*
* y = zetacf( x );
*
*
*
* DESCRIPTION:
*
*
*
* inf.
* - -x
* zetac(x) = > k , x > 1,
* -
* k=2
*
* is related to the Riemann zeta function by
*
* Riemann zeta(x) = zetac(x) + 1.
*
* Extension of the function definition for x < 1 is implemented.
* Zero is returned for x > log2(MAXNUM).
*
* An overflow error may occur for large negative x, due to the
* gamma function in the reflection formula.
*
* ACCURACY:
*
* Tabulated values have full machine accuracy.
*
* Relative error:
* arithmetic domain # trials peak rms
* IEEE 1,50 30000 5.5e-7 7.5e-8
*
*
*/
/*
Cephes Math Library Release 2.2: July, 1992
Copyright 1984, 1987, 1989, 1992 by Stephen L. Moshier
Direct inquiries to 30 Frost Street, Cambridge, MA 02140
*/
#include <math.h>
/* Riemann zeta(x) - 1
* for integer arguments between 0 and 30.
*/
static float azetacf[] = {
-1.50000000000000000000E0,
1.70141183460469231730E38, /* infinity. */
6.44934066848226436472E-1,
2.02056903159594285400E-1,
8.23232337111381915160E-2,
3.69277551433699263314E-2,
1.73430619844491397145E-2,
8.34927738192282683980E-3,
4.07735619794433937869E-3,
2.00839282608221441785E-3,
9.94575127818085337146E-4,
4.94188604119464558702E-4,
2.46086553308048298638E-4,
1.22713347578489146752E-4,
6.12481350587048292585E-5,
3.05882363070204935517E-5,
1.52822594086518717326E-5,
7.63719763789976227360E-6,
3.81729326499983985646E-6,
1.90821271655393892566E-6,
9.53962033872796113152E-7,
4.76932986787806463117E-7,
2.38450502727732990004E-7,
1.19219925965311073068E-7,
5.96081890512594796124E-8,
2.98035035146522801861E-8,
1.49015548283650412347E-8,
7.45071178983542949198E-9,
3.72533402478845705482E-9,
1.86265972351304900640E-9,
9.31327432419668182872E-10
};
/* 2**x (1 - 1/x) (zeta(x) - 1) = P(1/x)/Q(1/x), 1 <= x <= 10 */
static float P[9] = {
5.85746514569725319540E11,
2.57534127756102572888E11,
4.87781159567948256438E10,
5.15399538023885770696E9,
3.41646073514754094281E8,
1.60837006880656492731E7,
5.92785467342109522998E5,
1.51129169964938823117E4,
2.01822444485997955865E2,
};
static float Q[8] = {
/* 1.00000000000000000000E0,*/
3.90497676373371157516E11,
5.22858235368272161797E10,
5.64451517271280543351E9,
3.39006746015350418834E8,
1.79410371500126453702E7,
5.66666825131384797029E5,
1.60382976810944131506E4,
1.96436237223387314144E2,
};
/* log(zeta(x) - 1 - 2**-x), 10 <= x <= 50 */
static float A[11] = {
8.70728567484590192539E6,
1.76506865670346462757E8,
2.60889506707483264896E10,
5.29806374009894791647E11,
2.26888156119238241487E13,
3.31884402932705083599E14,
5.13778997975868230192E15,
-1.98123688133907171455E15,
-9.92763810039983572356E16,
7.82905376180870586444E16,
9.26786275768927717187E16,
};
static float B[10] = {
/* 1.00000000000000000000E0,*/
-7.92625410563741062861E6,
-1.60529969932920229676E8,
-2.37669260975543221788E10,
-4.80319584350455169857E11,
-2.07820961754173320170E13,
-2.96075404507272223680E14,
-4.86299103694609136686E15,
5.34589509675789930199E15,
5.71464111092297631292E16,
-1.79915597658676556828E16,
};
/* (1-x) (zeta(x) - 1), 0 <= x <= 1 */
static float R[6] = {
-3.28717474506562731748E-1,
1.55162528742623950834E1,
-2.48762831680821954401E2,
1.01050368053237678329E3,
1.26726061410235149405E4,
-1.11578094770515181334E5,
};
static float S[5] = {
/* 1.00000000000000000000E0,*/
1.95107674914060531512E1,
3.17710311750646984099E2,
3.03835500874445748734E3,
2.03665876435770579345E4,
7.43853965136767874343E4,
};
#define MAXL2 127
/*
* Riemann zeta function, minus one
*/
extern float MACHEPF, PIO2F, MAXNUMF, PIF;
#ifdef ANSIC
extern float sinf ( float xx );
extern float floorf ( float x );
extern float gammaf ( float xx );
extern float powf ( float x, float y );
extern float expf ( float xx );
extern float polevlf ( float xx, float *coef, int N );
extern float p1evlf ( float xx, float *coef, int N );
#else
float sinf(), floorf(), gammaf(), powf(), expf();
float polevlf(), p1evlf();
#endif
float zetacf(float xx)
{
int i;
float x, a, b, s, w;
x = xx;
if( x < 0.0 )
{
if( x < -30.8148 )
{
mtherr( "zetacf", OVERFLOW );
return(0.0);
}
s = 1.0 - x;
w = zetacf( s );
b = sinf(PIO2F*x) * powf(2.0*PIF, x) * gammaf(s) * (1.0 + w) / PIF;
return(b - 1.0);
}
if( x >= MAXL2 )
return(0.0); /* because first term is 2**-x */
/* Tabulated values for integer argument */
w = floorf(x);
if( w == x )
{
i = x;
if( i < 31 )
{
return( azetacf[i] );
}
}
if( x < 1.0 )
{
w = 1.0 - x;
a = polevlf( x, R, 5 ) / ( w * p1evlf( x, S, 5 ));
return( a );
}
if( x == 1.0 )
{
mtherr( "zetacf", SING );
return( MAXNUMF );
}
if( x <= 10.0 )
{
b = powf( 2.0, x ) * (x - 1.0);
w = 1.0/x;
s = (x * polevlf( w, P, 8 )) / (b * p1evlf( w, Q, 8 ));
return( s );
}
if( x <= 50.0 )
{
b = powf( 2.0, -x );
w = polevlf( x, A, 10 ) / p1evlf( x, B, 10 );
w = expf(w) + b;
return(w);
}
/* Basic sum of inverse powers */
s = 0.0;
a = 1.0;
do
{
a += 2.0;
b = powf( a, -x );
s += b;
}
while( b/s > MACHEPF );
b = powf( 2.0, -x );
s = (s + b)/(1.0-b);
return(s);
}
|