1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
|
/* incbif()
*
* Inverse of imcomplete beta integral
*
*
*
* SYNOPSIS:
*
* float a, b, x, y, incbif();
*
* x = incbif( a, b, y );
*
*
*
* DESCRIPTION:
*
* Given y, the function finds x such that
*
* incbet( a, b, x ) = y.
*
* the routine performs up to 10 Newton iterations to find the
* root of incbet(a,b,x) - y = 0.
*
*
* ACCURACY:
*
* Relative error:
* x a,b
* arithmetic domain domain # trials peak rms
* IEEE 0,1 0,100 5000 2.8e-4 8.3e-6
*
* Overflow and larger errors may occur for one of a or b near zero
* and the other large.
*/
/*
Cephes Math Library Release 2.2: July, 1992
Copyright 1984, 1987, 1992 by Stephen L. Moshier
Direct inquiries to 30 Frost Street, Cambridge, MA 02140
*/
#include <math.h>
extern float MACHEPF, MINLOGF;
#define fabsf(x) ( (x) < 0 ? -(x) : (x) )
#ifdef ANSIC
float incbetf(float, float, float);
float ndtrif(float), expf(float), logf(float), sqrtf(float), lgamf(float);
#else
float incbetf();
float ndtrif(), expf(), logf(), sqrtf(), lgamf();
#endif
float incbif( float aaa, float bbb, float yyy0 )
{
float aa, bb, yy0, a, b, y0;
float d, y, x, x0, x1, lgm, yp, di;
int i, rflg;
aa = aaa;
bb = bbb;
yy0 = yyy0;
if( yy0 <= 0 )
return(0.0);
if( yy0 >= 1.0 )
return(1.0);
/* approximation to inverse function */
yp = -ndtrif(yy0);
if( yy0 > 0.5 )
{
rflg = 1;
a = bb;
b = aa;
y0 = 1.0 - yy0;
yp = -yp;
}
else
{
rflg = 0;
a = aa;
b = bb;
y0 = yy0;
}
if( (aa <= 1.0) || (bb <= 1.0) )
{
y = 0.5 * yp * yp;
}
else
{
lgm = (yp * yp - 3.0)* 0.16666666666666667;
x0 = 2.0/( 1.0/(2.0*a-1.0) + 1.0/(2.0*b-1.0) );
y = yp * sqrtf( x0 + lgm ) / x0
- ( 1.0/(2.0*b-1.0) - 1.0/(2.0*a-1.0) )
* (lgm + 0.833333333333333333 - 2.0/(3.0*x0));
y = 2.0 * y;
if( y < MINLOGF )
{
x0 = 1.0;
goto under;
}
}
x = a/( a + b * expf(y) );
y = incbetf( a, b, x );
yp = (y - y0)/y0;
if( fabsf(yp) < 0.1 )
goto newt;
/* Resort to interval halving if not close enough */
x0 = 0.0;
x1 = 1.0;
di = 0.5;
for( i=0; i<20; i++ )
{
if( i != 0 )
{
x = di * x1 + (1.0-di) * x0;
y = incbetf( a, b, x );
yp = (y - y0)/y0;
if( fabsf(yp) < 1.0e-3 )
goto newt;
}
if( y < y0 )
{
x0 = x;
di = 0.5;
}
else
{
x1 = x;
di *= di;
if( di == 0.0 )
di = 0.5;
}
}
if( x0 == 0.0 )
{
under:
mtherr( "incbif", UNDERFLOW );
goto done;
}
newt:
x0 = x;
lgm = lgamf(a+b) - lgamf(a) - lgamf(b);
for( i=0; i<10; i++ )
{
/* compute the function at this point */
if( i != 0 )
y = incbetf(a,b,x0);
/* compute the derivative of the function at this point */
d = (a - 1.0) * logf(x0) + (b - 1.0) * logf(1.0-x0) + lgm;
if( d < MINLOGF )
{
x0 = 0.0;
goto under;
}
d = expf(d);
/* compute the step to the next approximation of x */
d = (y - y0)/d;
x = x0;
x0 = x0 - d;
if( x0 <= 0.0 )
{
x0 = 0.0;
goto under;
}
if( x0 >= 1.0 )
{
x0 = 1.0;
goto under;
}
if( i < 2 )
continue;
if( fabsf(d/x0) < 256.0 * MACHEPF )
goto done;
}
done:
if( rflg )
x0 = 1.0 - x0;
return( x0 );
}
|