1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
|
/* expnf.c
*
* Exponential integral En
*
*
*
* SYNOPSIS:
*
* int n;
* float x, y, expnf();
*
* y = expnf( n, x );
*
*
*
* DESCRIPTION:
*
* Evaluates the exponential integral
*
* inf.
* -
* | | -xt
* | e
* E (x) = | ---- dt.
* n | n
* | | t
* -
* 1
*
*
* Both n and x must be nonnegative.
*
* The routine employs either a power series, a continued
* fraction, or an asymptotic formula depending on the
* relative values of n and x.
*
* ACCURACY:
*
* Relative error:
* arithmetic domain # trials peak rms
* IEEE 0, 30 10000 5.6e-7 1.2e-7
*
*/
/* expn.c */
/* Cephes Math Library Release 2.2: July, 1992
* Copyright 1985, 1992 by Stephen L. Moshier
* Direct inquiries to 30 Frost Street, Cambridge, MA 02140 */
#include <math.h>
#define EUL 0.57721566490153286060
#define BIG 16777216.
extern float MAXNUMF, MACHEPF, MAXLOGF;
#ifdef ANSIC
float powf(float, float), gammaf(float), logf(float), expf(float);
#else
float powf(), gammaf(), logf(), expf();
#endif
#define fabsf(x) ( (x) < 0 ? -(x) : (x) )
float expnf( int n, float xx )
{
float x, ans, r, t, yk, xk;
float pk, pkm1, pkm2, qk, qkm1, qkm2;
float psi, z;
int i, k;
static float big = BIG;
x = xx;
if( n < 0 )
goto domerr;
if( x < 0 )
{
domerr: mtherr( "expnf", DOMAIN );
return( MAXNUMF );
}
if( x > MAXLOGF )
return( 0.0 );
if( x == 0.0 )
{
if( n < 2 )
{
mtherr( "expnf", SING );
return( MAXNUMF );
}
else
return( 1.0/(n-1.0) );
}
if( n == 0 )
return( expf(-x)/x );
/* expn.c */
/* Expansion for large n */
if( n > 5000 )
{
xk = x + n;
yk = 1.0 / (xk * xk);
t = n;
ans = yk * t * (6.0 * x * x - 8.0 * t * x + t * t);
ans = yk * (ans + t * (t - 2.0 * x));
ans = yk * (ans + t);
ans = (ans + 1.0) * expf( -x ) / xk;
goto done;
}
if( x > 1.0 )
goto cfrac;
/* expn.c */
/* Power series expansion */
psi = -EUL - logf(x);
for( i=1; i<n; i++ )
psi = psi + 1.0/i;
z = -x;
xk = 0.0;
yk = 1.0;
pk = 1.0 - n;
if( n == 1 )
ans = 0.0;
else
ans = 1.0/pk;
do
{
xk += 1.0;
yk *= z/xk;
pk += 1.0;
if( pk != 0.0 )
{
ans += yk/pk;
}
if( ans != 0.0 )
t = fabsf(yk/ans);
else
t = 1.0;
}
while( t > MACHEPF );
k = xk;
t = n;
r = n - 1;
ans = (powf(z, r) * psi / gammaf(t)) - ans;
goto done;
/* expn.c */
/* continued fraction */
cfrac:
k = 1;
pkm2 = 1.0;
qkm2 = x;
pkm1 = 1.0;
qkm1 = x + n;
ans = pkm1/qkm1;
do
{
k += 1;
if( k & 1 )
{
yk = 1.0;
xk = n + (k-1)/2;
}
else
{
yk = x;
xk = k/2;
}
pk = pkm1 * yk + pkm2 * xk;
qk = qkm1 * yk + qkm2 * xk;
if( qk != 0 )
{
r = pk/qk;
t = fabsf( (ans - r)/r );
ans = r;
}
else
t = 1.0;
pkm2 = pkm1;
pkm1 = pk;
qkm2 = qkm1;
qkm1 = qk;
if( fabsf(pk) > big )
{
pkm2 *= MACHEPF;
pkm1 *= MACHEPF;
qkm2 *= MACHEPF;
qkm1 *= MACHEPF;
}
}
while( t > MACHEPF );
ans *= expf( -x );
done:
return( ans );
}
|