1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
|
/* chbevlf.c
*
* Evaluate Chebyshev series
*
*
*
* SYNOPSIS:
*
* int N;
* float x, y, coef[N], chebevlf();
*
* y = chbevlf( x, coef, N );
*
*
*
* DESCRIPTION:
*
* Evaluates the series
*
* N-1
* - '
* y = > coef[i] T (x/2)
* - i
* i=0
*
* of Chebyshev polynomials Ti at argument x/2.
*
* Coefficients are stored in reverse order, i.e. the zero
* order term is last in the array. Note N is the number of
* coefficients, not the order.
*
* If coefficients are for the interval a to b, x must
* have been transformed to x -> 2(2x - b - a)/(b-a) before
* entering the routine. This maps x from (a, b) to (-1, 1),
* over which the Chebyshev polynomials are defined.
*
* If the coefficients are for the inverted interval, in
* which (a, b) is mapped to (1/b, 1/a), the transformation
* required is x -> 2(2ab/x - b - a)/(b-a). If b is infinity,
* this becomes x -> 4a/x - 1.
*
*
*
* SPEED:
*
* Taking advantage of the recurrence properties of the
* Chebyshev polynomials, the routine requires one more
* addition per loop than evaluating a nested polynomial of
* the same degree.
*
*/
/* chbevl.c */
/*
Cephes Math Library Release 2.0: April, 1987
Copyright 1985, 1987 by Stephen L. Moshier
Direct inquiries to 30 Frost Street, Cambridge, MA 02140
*/
#ifdef ANSIC
float chbevlf( float x, float *array, int n )
#else
float chbevlf( x, array, n )
float x;
float *array;
int n;
#endif
{
float b0, b1, b2, *p;
int i;
p = array;
b0 = *p++;
b1 = 0.0;
i = n - 1;
do
{
b2 = b1;
b1 = b0;
b0 = x * b1 - b2 + *p++;
}
while( --i );
return( 0.5*(b0-b2) );
}
|