summaryrefslogtreecommitdiff
path: root/libm/float/bdtrf.c
blob: e063f1c775c069a4b4aa5848c6e149d00682686c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
/*							bdtrf.c
 *
 *	Binomial distribution
 *
 *
 *
 * SYNOPSIS:
 *
 * int k, n;
 * float p, y, bdtrf();
 *
 * y = bdtrf( k, n, p );
 *
 *
 *
 * DESCRIPTION:
 *
 * Returns the sum of the terms 0 through k of the Binomial
 * probability density:
 *
 *   k
 *   --  ( n )   j      n-j
 *   >   (   )  p  (1-p)
 *   --  ( j )
 *  j=0
 *
 * The terms are not summed directly; instead the incomplete
 * beta integral is employed, according to the formula
 *
 * y = bdtr( k, n, p ) = incbet( n-k, k+1, 1-p ).
 *
 * The arguments must be positive, with p ranging from 0 to 1.
 *
 *
 *
 * ACCURACY:
 *
 *        Relative error (p varies from 0 to 1):
 * arithmetic   domain     # trials      peak         rms
 *    IEEE       0,100       2000       6.9e-5      1.1e-5
 *
 * ERROR MESSAGES:
 *
 *   message         condition      value returned
 * bdtrf domain        k < 0            0.0
 *                     n < k
 *                     x < 0, x > 1
 *
 */
/*							bdtrcf()
 *
 *	Complemented binomial distribution
 *
 *
 *
 * SYNOPSIS:
 *
 * int k, n;
 * float p, y, bdtrcf();
 *
 * y = bdtrcf( k, n, p );
 *
 *
 *
 * DESCRIPTION:
 *
 * Returns the sum of the terms k+1 through n of the Binomial
 * probability density:
 *
 *   n
 *   --  ( n )   j      n-j
 *   >   (   )  p  (1-p)
 *   --  ( j )
 *  j=k+1
 *
 * The terms are not summed directly; instead the incomplete
 * beta integral is employed, according to the formula
 *
 * y = bdtrc( k, n, p ) = incbet( k+1, n-k, p ).
 *
 * The arguments must be positive, with p ranging from 0 to 1.
 *
 *
 *
 * ACCURACY:
 *
 *        Relative error (p varies from 0 to 1):
 * arithmetic   domain     # trials      peak         rms
 *    IEEE       0,100       2000       6.0e-5      1.2e-5
 *
 * ERROR MESSAGES:
 *
 *   message         condition      value returned
 * bdtrcf domain     x<0, x>1, n<k       0.0
 */
/*							bdtrif()
 *
 *	Inverse binomial distribution
 *
 *
 *
 * SYNOPSIS:
 *
 * int k, n;
 * float p, y, bdtrif();
 *
 * p = bdtrf( k, n, y );
 *
 *
 *
 * DESCRIPTION:
 *
 * Finds the event probability p such that the sum of the
 * terms 0 through k of the Binomial probability density
 * is equal to the given cumulative probability y.
 *
 * This is accomplished using the inverse beta integral
 * function and the relation
 *
 * 1 - p = incbi( n-k, k+1, y ).
 *
 *
 *
 *
 * ACCURACY:
 *
 *        Relative error (p varies from 0 to 1):
 * arithmetic   domain     # trials      peak         rms
 *    IEEE       0,100       2000       3.5e-5      3.3e-6
 *
 * ERROR MESSAGES:
 *
 *   message         condition      value returned
 * bdtrif domain    k < 0, n <= k         0.0
 *                  x < 0, x > 1
 *
 */

/*								bdtr() */


/*
Cephes Math Library Release 2.2:  July, 1992
Copyright 1984, 1987, 1992 by Stephen L. Moshier
Direct inquiries to 30 Frost Street, Cambridge, MA 02140
*/

#include <math.h>

#ifdef ANSIC
float incbetf(float, float, float), powf(float, float);
float incbif( float, float, float );
#else
float incbetf(), powf(), incbif();
#endif

float bdtrcf( int k, int n, float pp )
{
float p, dk, dn;

p = pp;
if( (p < 0.0) || (p > 1.0) )
	goto domerr;
if( k < 0 )
	return( 1.0 );

if( n < k )
	{
domerr:
	mtherr( "bdtrcf", DOMAIN );
	return( 0.0 );
	}

if( k == n )
	return( 0.0 );
dn = n - k;
if( k == 0 )
	{
	dk = 1.0 - powf( 1.0-p, dn );
	}
else
	{
	dk = k + 1;
	dk = incbetf( dk, dn, p );
	}
return( dk );
}



float bdtrf( int k, int n, float pp )
{
float p, dk, dn;

p = pp;
if( (p < 0.0) || (p > 1.0) )
	goto domerr;
if( (k < 0) || (n < k) )
	{
domerr:
	mtherr( "bdtrf", DOMAIN );
	return( 0.0 );
	}

if( k == n )
	return( 1.0 );

dn = n - k;
if( k == 0 )
	{
	dk = powf( 1.0-p, dn );
	}
else
	{
	dk = k + 1;
	dk = incbetf( dn, dk, 1.0 - p );
	}
return( dk );
}


float bdtrif( int k, int n, float yy )
{
float y, dk, dn, p;

y = yy;
if( (y < 0.0) || (y > 1.0) )
	goto domerr;
if( (k < 0) || (n <= k) )
	{
domerr:
	mtherr( "bdtrif", DOMAIN );
	return( 0.0 );
	}

dn = n - k;
if( k == 0 )
	{
	p = 1.0 - powf( y, 1.0/dn );
	}
else
	{
	dk = k + 1;
	p = 1.0 - incbif( dn, dk, y );
	}
return( p );
}