1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
|
/* sincos.c
*
* Circular sine and cosine of argument in degrees
* Table lookup and interpolation algorithm
*
*
*
* SYNOPSIS:
*
* double x, sine, cosine, flg, sincos();
*
* sincos( x, &sine, &cosine, flg );
*
*
*
* DESCRIPTION:
*
* Returns both the sine and the cosine of the argument x.
* Several different compile time options and minimax
* approximations are supplied to permit tailoring the
* tradeoff between computation speed and accuracy.
*
* Since range reduction is time consuming, the reduction
* of x modulo 360 degrees is also made optional.
*
* sin(i) is internally tabulated for 0 <= i <= 90 degrees.
* Approximation polynomials, ranging from linear interpolation
* to cubics in (x-i)**2, compute the sine and cosine
* of the residual x-i which is between -0.5 and +0.5 degree.
* In the case of the high accuracy options, the residual
* and the tabulated values are combined using the trigonometry
* formulas for sin(A+B) and cos(A+B).
*
* Compile time options are supplied for 5, 11, or 17 decimal
* relative accuracy (ACC5, ACC11, ACC17 respectively).
* A subroutine flag argument "flg" chooses betwen this
* accuracy and table lookup only (peak absolute error
* = 0.0087).
*
* If the argument flg = 1, then the tabulated value is
* returned for the nearest whole number of degrees. The
* approximation polynomials are not computed. At
* x = 0.5 deg, the absolute error is then sin(0.5) = 0.0087.
*
* An intermediate speed and precision can be obtained using
* the compile time option LINTERP and flg = 1. This yields
* a linear interpolation using a slope estimated from the sine
* or cosine at the nearest integer argument. The peak absolute
* error with this option is 3.8e-5. Relative error at small
* angles is about 1e-5.
*
* If flg = 0, then the approximation polynomials are computed
* and applied.
*
*
*
* SPEED:
*
* Relative speed comparisons follow for 6MHz IBM AT clone
* and Microsoft C version 4.0. These figures include
* software overhead of do loop and function calls.
* Since system hardware and software vary widely, the
* numbers should be taken as representative only.
*
* flg=0 flg=0 flg=1 flg=1
* ACC11 ACC5 LINTERP Lookup only
* In-line 8087 (/FPi)
* sin(), cos() 1.0 1.0 1.0 1.0
*
* In-line 8087 (/FPi)
* sincos() 1.1 1.4 1.9 3.0
*
* Software (/FPa)
* sin(), cos() 0.19 0.19 0.19 0.19
*
* Software (/FPa)
* sincos() 0.39 0.50 0.73 1.7
*
*
*
* ACCURACY:
*
* The accurate approximations are designed with a relative error
* criterion. The absolute error is greatest at x = 0.5 degree.
* It decreases from a local maximum at i+0.5 degrees to full
* machine precision at each integer i degrees. With the
* ACC5 option, the relative error of 6.3e-6 is equivalent to
* an absolute angular error of 0.01 arc second in the argument
* at x = i+0.5 degrees. For small angles < 0.5 deg, the ACC5
* accuracy is 6.3e-6 (.00063%) of reading; i.e., the absolute
* error decreases in proportion to the argument. This is true
* for both the sine and cosine approximations, since the latter
* is for the function 1 - cos(x).
*
* If absolute error is of most concern, use the compile time
* option ABSERR to obtain an absolute error of 2.7e-8 for ACC5
* precision. This is about half the absolute error of the
* relative precision option. In this case the relative error
* for small angles will increase to 9.5e-6 -- a reasonable
* tradeoff.
*/
#include <math.h>
/* Define one of the following to be 1:
*/
#define ACC5 1
#define ACC11 0
#define ACC17 0
/* Option for linear interpolation when flg = 1
*/
#define LINTERP 1
/* Option for absolute error criterion
*/
#define ABSERR 1
/* Option to include modulo 360 function:
*/
#define MOD360 0
/*
Cephes Math Library Release 2.1
Copyright 1987 by Stephen L. Moshier
Direct inquiries to 30 Frost Street, Cambridge, MA 02140
*/
/* Table of sin(i degrees)
* for 0 <= i <= 90
*/
static double sintbl[92] = {
0.00000000000000000000E0,
1.74524064372835128194E-2,
3.48994967025009716460E-2,
5.23359562429438327221E-2,
6.97564737441253007760E-2,
8.71557427476581735581E-2,
1.04528463267653471400E-1,
1.21869343405147481113E-1,
1.39173100960065444112E-1,
1.56434465040230869010E-1,
1.73648177666930348852E-1,
1.90808995376544812405E-1,
2.07911690817759337102E-1,
2.24951054343864998051E-1,
2.41921895599667722560E-1,
2.58819045102520762349E-1,
2.75637355816999185650E-1,
2.92371704722736728097E-1,
3.09016994374947424102E-1,
3.25568154457156668714E-1,
3.42020143325668733044E-1,
3.58367949545300273484E-1,
3.74606593415912035415E-1,
3.90731128489273755062E-1,
4.06736643075800207754E-1,
4.22618261740699436187E-1,
4.38371146789077417453E-1,
4.53990499739546791560E-1,
4.69471562785890775959E-1,
4.84809620246337029075E-1,
5.00000000000000000000E-1,
5.15038074910054210082E-1,
5.29919264233204954047E-1,
5.44639035015027082224E-1,
5.59192903470746830160E-1,
5.73576436351046096108E-1,
5.87785252292473129169E-1,
6.01815023152048279918E-1,
6.15661475325658279669E-1,
6.29320391049837452706E-1,
6.42787609686539326323E-1,
6.56059028990507284782E-1,
6.69130606358858213826E-1,
6.81998360062498500442E-1,
6.94658370458997286656E-1,
7.07106781186547524401E-1,
7.19339800338651139356E-1,
7.31353701619170483288E-1,
7.43144825477394235015E-1,
7.54709580222771997943E-1,
7.66044443118978035202E-1,
7.77145961456970879980E-1,
7.88010753606721956694E-1,
7.98635510047292846284E-1,
8.09016994374947424102E-1,
8.19152044288991789684E-1,
8.29037572555041692006E-1,
8.38670567945424029638E-1,
8.48048096156425970386E-1,
8.57167300702112287465E-1,
8.66025403784438646764E-1,
8.74619707139395800285E-1,
8.82947592858926942032E-1,
8.91006524188367862360E-1,
8.98794046299166992782E-1,
9.06307787036649963243E-1,
9.13545457642600895502E-1,
9.20504853452440327397E-1,
9.27183854566787400806E-1,
9.33580426497201748990E-1,
9.39692620785908384054E-1,
9.45518575599316810348E-1,
9.51056516295153572116E-1,
9.56304755963035481339E-1,
9.61261695938318861916E-1,
9.65925826289068286750E-1,
9.70295726275996472306E-1,
9.74370064785235228540E-1,
9.78147600733805637929E-1,
9.81627183447663953497E-1,
9.84807753012208059367E-1,
9.87688340595137726190E-1,
9.90268068741570315084E-1,
9.92546151641322034980E-1,
9.94521895368273336923E-1,
9.96194698091745532295E-1,
9.97564050259824247613E-1,
9.98629534754573873784E-1,
9.99390827019095730006E-1,
9.99847695156391239157E-1,
1.00000000000000000000E0,
9.99847695156391239157E-1,
};
#ifdef ANSIPROT
double floor ( double );
#else
double floor();
#endif
int sincos(x, s, c, flg)
double x;
double *s, *c;
int flg;
{
int ix, ssign, csign, xsign;
double y, z, sx, sz, cx, cz;
/* Make argument nonnegative.
*/
xsign = 1;
if( x < 0.0 )
{
xsign = -1;
x = -x;
}
#if MOD360
x = x - 360.0 * floor( x/360.0 );
#endif
/* Find nearest integer to x.
* Note there should be a domain error test here,
* but this is omitted to gain speed.
*/
ix = x + 0.5;
z = x - ix; /* the residual */
/* Look up the sine and cosine of the integer.
*/
if( ix <= 180 )
{
ssign = 1;
csign = 1;
}
else
{
ssign = -1;
csign = -1;
ix -= 180;
}
if( ix > 90 )
{
csign = -csign;
ix = 180 - ix;
}
sx = sintbl[ix];
if( ssign < 0 )
sx = -sx;
cx = sintbl[ 90-ix ];
if( csign < 0 )
cx = -cx;
/* If the flag argument is set, then just return
* the tabulated values for arg to the nearest whole degree.
*/
if( flg )
{
#if LINTERP
y = sx + 1.74531263774940077459e-2 * z * cx;
cx -= 1.74531263774940077459e-2 * z * sx;
sx = y;
#endif
if( xsign < 0 )
sx = -sx;
*s = sx; /* sine */
*c = cx; /* cosine */
return 0;
}
if( ssign < 0 )
sx = -sx;
if( csign < 0 )
cx = -cx;
/* Find sine and cosine
* of the residual angle between -0.5 and +0.5 degree.
*/
#if ACC5
#if ABSERR
/* absolute error = 2.769e-8: */
sz = 1.74531263774940077459e-2 * z;
/* absolute error = 4.146e-11: */
cz = 1.0 - 1.52307909153324666207e-4 * z * z;
#else
/* relative error = 6.346e-6: */
sz = 1.74531817576426662296e-2 * z;
/* relative error = 3.173e-6: */
cz = 1.0 - 1.52308226602566149927e-4 * z * z;
#endif
#else
y = z * z;
#endif
#if ACC11
sz = ( -8.86092781698004819918e-7 * y
+ 1.74532925198378577601e-2 ) * z;
cz = 1.0 - ( -3.86631403698859047896e-9 * y
+ 1.52308709893047593702e-4 ) * y;
#endif
#if ACC17
sz = (( 1.34959795251974073996e-11 * y
- 8.86096155697856783296e-7 ) * y
+ 1.74532925199432957214e-2 ) * z;
cz = 1.0 - (( 3.92582397764340914444e-14 * y
- 3.86632385155548605680e-9 ) * y
+ 1.52308709893354299569e-4 ) * y;
#endif
/* Combine the tabulated part and the calculated part
* by trigonometry.
*/
y = sx * cz + cx * sz;
if( xsign < 0 )
y = - y;
*s = y; /* sine */
*c = cx * cz - sx * sz; /* cosine */
return 0;
}
|