summaryrefslogtreecommitdiff
path: root/libm/double/rgamma.c
blob: 1d6ff3840cc66bc9ba4465af6294c8f5dfaeee73 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
/*						rgamma.c
 *
 *	Reciprocal gamma function
 *
 *
 *
 * SYNOPSIS:
 *
 * double x, y, rgamma();
 *
 * y = rgamma( x );
 *
 *
 *
 * DESCRIPTION:
 *
 * Returns one divided by the gamma function of the argument.
 *
 * The function is approximated by a Chebyshev expansion in
 * the interval [0,1].  Range reduction is by recurrence
 * for arguments between -34.034 and +34.84425627277176174.
 * 1/MAXNUM is returned for positive arguments outside this
 * range.  For arguments less than -34.034 the cosecant
 * reflection formula is applied; lograrithms are employed
 * to avoid unnecessary overflow.
 *
 * The reciprocal gamma function has no singularities,
 * but overflow and underflow may occur for large arguments.
 * These conditions return either MAXNUM or 1/MAXNUM with
 * appropriate sign.
 *
 * ACCURACY:
 *
 *                      Relative error:
 * arithmetic   domain     # trials      peak         rms
 *    DEC      -30,+30       4000       1.2e-16     1.8e-17
 *    IEEE     -30,+30      30000       1.1e-15     2.0e-16
 * For arguments less than -34.034 the peak error is on the
 * order of 5e-15 (DEC), excepting overflow or underflow.
 */

/*
Cephes Math Library Release 2.8:  June, 2000
Copyright 1985, 1987, 2000 by Stephen L. Moshier
*/

#include <math.h>

/* Chebyshev coefficients for reciprocal gamma function
 * in interval 0 to 1.  Function is 1/(x gamma(x)) - 1
 */

#ifdef UNK
static double R[] = {
 3.13173458231230000000E-17,
-6.70718606477908000000E-16,
 2.20039078172259550000E-15,
 2.47691630348254132600E-13,
-6.60074100411295197440E-12,
 5.13850186324226978840E-11,
 1.08965386454418662084E-9,
-3.33964630686836942556E-8,
 2.68975996440595483619E-7,
 2.96001177518801696639E-6,
-8.04814124978471142852E-5,
 4.16609138709688864714E-4,
 5.06579864028608725080E-3,
-6.41925436109158228810E-2,
-4.98558728684003594785E-3,
 1.27546015610523951063E-1
};
#endif

#ifdef DEC
static unsigned short R[] = {
0022420,0066376,0176751,0071636,
0123501,0051114,0042104,0131153,
0024036,0107013,0126504,0033361,
0025613,0070040,0035174,0162316,
0126750,0037060,0077775,0122202,
0027541,0177143,0037675,0105150,
0030625,0141311,0075005,0115436,
0132017,0067714,0125033,0014721,
0032620,0063707,0105256,0152643,
0033506,0122235,0072757,0170053,
0134650,0144041,0015617,0016143,
0035332,0066125,0000776,0006215,
0036245,0177377,0137173,0131432,
0137203,0073541,0055645,0141150,
0136243,0057043,0026226,0017362,
0037402,0115554,0033441,0012310
};
#endif

#ifdef IBMPC
static unsigned short R[] = {
0x2e74,0xdfbd,0x0d9f,0x3c82,
0x964d,0x8888,0x2a49,0xbcc8,
0x86de,0x75a8,0xd1c1,0x3ce3,
0x9c9a,0x074f,0x6e04,0x3d51,
0xb490,0x0fff,0x07c6,0xbd9d,
0xb14d,0x67f7,0x3fcc,0x3dcc,
0xb364,0x2f40,0xb859,0x3e12,
0x633a,0x9543,0xedf9,0xbe61,
0xdab4,0xf155,0x0cf8,0x3e92,
0xfe05,0xaebd,0xd493,0x3ec8,
0xe38c,0x2371,0x1904,0xbf15,
0xc192,0xa03f,0x4d8a,0x3f3b,
0x7663,0xf7cf,0xbfdf,0x3f74,
0xb84d,0x2b74,0x6eec,0xbfb0,
0xc3de,0x6592,0x6bc4,0xbf74,
0x2299,0x86e4,0x536d,0x3fc0
};
#endif

#ifdef MIEEE
static unsigned short R[] = {
0x3c82,0x0d9f,0xdfbd,0x2e74,
0xbcc8,0x2a49,0x8888,0x964d,
0x3ce3,0xd1c1,0x75a8,0x86de,
0x3d51,0x6e04,0x074f,0x9c9a,
0xbd9d,0x07c6,0x0fff,0xb490,
0x3dcc,0x3fcc,0x67f7,0xb14d,
0x3e12,0xb859,0x2f40,0xb364,
0xbe61,0xedf9,0x9543,0x633a,
0x3e92,0x0cf8,0xf155,0xdab4,
0x3ec8,0xd493,0xaebd,0xfe05,
0xbf15,0x1904,0x2371,0xe38c,
0x3f3b,0x4d8a,0xa03f,0xc192,
0x3f74,0xbfdf,0xf7cf,0x7663,
0xbfb0,0x6eec,0x2b74,0xb84d,
0xbf74,0x6bc4,0x6592,0xc3de,
0x3fc0,0x536d,0x86e4,0x2299
};
#endif

static char name[] = "rgamma";

#ifdef ANSIPROT
extern double chbevl ( double, void *, int );
extern double exp ( double );
extern double log ( double );
extern double sin ( double );
extern double lgam ( double );
#else
double chbevl(), exp(), log(), sin(), lgam();
#endif
extern double PI, MAXLOG, MAXNUM;


double rgamma(x)
double x;
{
double w, y, z;
int sign;

if( x > 34.84425627277176174)
	{
	mtherr( name, UNDERFLOW );
	return(1.0/MAXNUM);
	}
if( x < -34.034 )
	{
	w = -x;
	z = sin( PI*w );
	if( z == 0.0 )
		return(0.0);
	if( z < 0.0 )
		{
		sign = 1;
		z = -z;
		}
	else
		sign = -1;

	y = log( w * z ) - log(PI) + lgam(w);
	if( y < -MAXLOG )
		{
		mtherr( name, UNDERFLOW );
		return( sign * 1.0 / MAXNUM );
		}
	if( y > MAXLOG )
		{
		mtherr( name, OVERFLOW );
		return( sign * MAXNUM );
		}
	return( sign * exp(y));
	}
z = 1.0;
w = x;

while( w > 1.0 )	/* Downward recurrence */
	{
	w -= 1.0;
	z *= w;
	}
while( w < 0.0 )	/* Upward recurrence */
	{
	z /= w;
	w += 1.0;
	}
if( w == 0.0 )		/* Nonpositive integer */
	return(0.0);
if( w == 1.0 )		/* Other integer */
	return( 1.0/z );

y = w * ( 1.0 + chbevl( 4.0*w-2.0, R, 16 ) ) / z;
return(y);
}