summaryrefslogtreecommitdiff
path: root/libm/double/ndtri.c
blob: 948e36c50c811d0496f803f63692346ffb866607 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
/*							ndtri.c
 *
 *	Inverse of Normal distribution function
 *
 *
 *
 * SYNOPSIS:
 *
 * double x, y, ndtri();
 *
 * x = ndtri( y );
 *
 *
 *
 * DESCRIPTION:
 *
 * Returns the argument, x, for which the area under the
 * Gaussian probability density function (integrated from
 * minus infinity to x) is equal to y.
 *
 *
 * For small arguments 0 < y < exp(-2), the program computes
 * z = sqrt( -2.0 * log(y) );  then the approximation is
 * x = z - log(z)/z  - (1/z) P(1/z) / Q(1/z).
 * There are two rational functions P/Q, one for 0 < y < exp(-32)
 * and the other for y up to exp(-2).  For larger arguments,
 * w = y - 0.5, and  x/sqrt(2pi) = w + w**3 R(w**2)/S(w**2)).
 *
 *
 * ACCURACY:
 *
 *                      Relative error:
 * arithmetic   domain        # trials      peak         rms
 *    DEC      0.125, 1         5500       9.5e-17     2.1e-17
 *    DEC      6e-39, 0.135     3500       5.7e-17     1.3e-17
 *    IEEE     0.125, 1        20000       7.2e-16     1.3e-16
 *    IEEE     3e-308, 0.135   50000       4.6e-16     9.8e-17
 *
 *
 * ERROR MESSAGES:
 *
 *   message         condition    value returned
 * ndtri domain       x <= 0        -MAXNUM
 * ndtri domain       x >= 1         MAXNUM
 *
 */


/*
Cephes Math Library Release 2.8:  June, 2000
Copyright 1984, 1987, 1989, 2000 by Stephen L. Moshier
*/

#include <math.h>
extern double MAXNUM;

#ifdef UNK
/* sqrt(2pi) */
static double s2pi = 2.50662827463100050242E0;
#endif

#ifdef DEC
static unsigned short s2p[] = {0040440,0066230,0177661,0034055};
#define s2pi *(double *)s2p
#endif

#ifdef IBMPC
static unsigned short s2p[] = {0x2706,0x1ff6,0x0d93,0x4004};
#define s2pi *(double *)s2p
#endif

#ifdef MIEEE
static unsigned short s2p[] = {
0x4004,0x0d93,0x1ff6,0x2706
};
#define s2pi *(double *)s2p
#endif

/* approximation for 0 <= |y - 0.5| <= 3/8 */
#ifdef UNK
static double P0[5] = {
-5.99633501014107895267E1,
 9.80010754185999661536E1,
-5.66762857469070293439E1,
 1.39312609387279679503E1,
-1.23916583867381258016E0,
};
static double Q0[8] = {
/* 1.00000000000000000000E0,*/
 1.95448858338141759834E0,
 4.67627912898881538453E0,
 8.63602421390890590575E1,
-2.25462687854119370527E2,
 2.00260212380060660359E2,
-8.20372256168333339912E1,
 1.59056225126211695515E1,
-1.18331621121330003142E0,
};
#endif
#ifdef DEC
static unsigned short P0[20] = {
0141557,0155170,0071360,0120550,
0041704,0000214,0172417,0067307,
0141542,0132204,0040066,0156723,
0041136,0163161,0157276,0007747,
0140236,0116374,0073666,0051764,
};
static unsigned short Q0[32] = {
/*0040200,0000000,0000000,0000000,*/
0040372,0026256,0110403,0123707,
0040625,0122024,0020277,0026661,
0041654,0134161,0124134,0007244,
0142141,0073162,0133021,0131371,
0042110,0041235,0043516,0057767,
0141644,0011417,0036155,0137305,
0041176,0076556,0004043,0125430,
0140227,0073347,0152776,0067251,
};
#endif
#ifdef IBMPC
static unsigned short P0[20] = {
0x142d,0x0e5e,0xfb4f,0xc04d,
0xedd9,0x9ea1,0x8011,0x4058,
0xdbba,0x8806,0x5690,0xc04c,
0xc1fd,0x3bd7,0xdcce,0x402b,
0xca7e,0x8ef6,0xd39f,0xbff3,
};
static unsigned short Q0[36] = {
/*0x0000,0x0000,0x0000,0x3ff0,*/
0x74f9,0xd220,0x4595,0x3fff,
0xe5b6,0x8417,0xb482,0x4012,
0x81d4,0x350b,0x970e,0x4055,
0x365f,0x56c2,0x2ece,0xc06c,
0xcbff,0xa8e9,0x0853,0x4069,
0xb7d9,0xe78d,0x8261,0xc054,
0x7563,0xc104,0xcfad,0x402f,
0xcdd5,0xfabf,0xeedc,0xbff2,
};
#endif
#ifdef MIEEE
static unsigned short P0[20] = {
0xc04d,0xfb4f,0x0e5e,0x142d,
0x4058,0x8011,0x9ea1,0xedd9,
0xc04c,0x5690,0x8806,0xdbba,
0x402b,0xdcce,0x3bd7,0xc1fd,
0xbff3,0xd39f,0x8ef6,0xca7e,
};
static unsigned short Q0[32] = {
/*0x3ff0,0x0000,0x0000,0x0000,*/
0x3fff,0x4595,0xd220,0x74f9,
0x4012,0xb482,0x8417,0xe5b6,
0x4055,0x970e,0x350b,0x81d4,
0xc06c,0x2ece,0x56c2,0x365f,
0x4069,0x0853,0xa8e9,0xcbff,
0xc054,0x8261,0xe78d,0xb7d9,
0x402f,0xcfad,0xc104,0x7563,
0xbff2,0xeedc,0xfabf,0xcdd5,
};
#endif


/* Approximation for interval z = sqrt(-2 log y ) between 2 and 8
 * i.e., y between exp(-2) = .135 and exp(-32) = 1.27e-14.
 */
#ifdef UNK
static double P1[9] = {
 4.05544892305962419923E0,
 3.15251094599893866154E1,
 5.71628192246421288162E1,
 4.40805073893200834700E1,
 1.46849561928858024014E1,
 2.18663306850790267539E0,
-1.40256079171354495875E-1,
-3.50424626827848203418E-2,
-8.57456785154685413611E-4,
};
static double Q1[8] = {
/*  1.00000000000000000000E0,*/
 1.57799883256466749731E1,
 4.53907635128879210584E1,
 4.13172038254672030440E1,
 1.50425385692907503408E1,
 2.50464946208309415979E0,
-1.42182922854787788574E-1,
-3.80806407691578277194E-2,
-9.33259480895457427372E-4,
};
#endif
#ifdef DEC
static unsigned short P1[36] = {
0040601,0143074,0150744,0073326,
0041374,0031554,0113253,0146016,
0041544,0123272,0012463,0176771,
0041460,0051160,0103560,0156511,
0041152,0172624,0117772,0030755,
0040413,0170713,0151545,0176413,
0137417,0117512,0022154,0131671,
0137017,0104257,0071432,0007072,
0135540,0143363,0063137,0036166,
};
static unsigned short Q1[32] = {
/*0040200,0000000,0000000,0000000,*/
0041174,0075325,0004736,0120326,
0041465,0110044,0047561,0045567,
0041445,0042321,0012142,0030340,
0041160,0127074,0166076,0141051,
0040440,0046055,0040745,0150400,
0137421,0114146,0067330,0010621,
0137033,0175162,0025555,0114351,
0135564,0122773,0145750,0030357,
};
#endif
#ifdef IBMPC
static unsigned short P1[36] = {
0x8edb,0x9a3c,0x38c7,0x4010,
0x7982,0x92d5,0x866d,0x403f,
0x7fbf,0x42a6,0x94d7,0x404c,
0x1ba9,0x10ee,0x0a4e,0x4046,
0x463e,0x93ff,0x5eb2,0x402d,
0xbfa1,0x7a6c,0x7e39,0x4001,
0x9677,0x448d,0xf3e9,0xbfc1,
0x41c7,0xee63,0xf115,0xbfa1,
0xe78f,0x6ccb,0x18de,0xbf4c,
};
static unsigned short Q1[32] = {
/*0x0000,0x0000,0x0000,0x3ff0,*/
0xd41b,0xa13b,0x8f5a,0x402f,
0x296f,0x89ee,0xb204,0x4046,
0x461c,0x228c,0xa89a,0x4044,
0xd845,0x9d87,0x15c7,0x402e,
0xba20,0xa83c,0x0985,0x4004,
0x0232,0xcddb,0x330c,0xbfc2,
0xb31d,0x456d,0x7f4e,0xbfa3,
0x061e,0x797d,0x94bf,0xbf4e,
};
#endif
#ifdef MIEEE
static unsigned short P1[36] = {
0x4010,0x38c7,0x9a3c,0x8edb,
0x403f,0x866d,0x92d5,0x7982,
0x404c,0x94d7,0x42a6,0x7fbf,
0x4046,0x0a4e,0x10ee,0x1ba9,
0x402d,0x5eb2,0x93ff,0x463e,
0x4001,0x7e39,0x7a6c,0xbfa1,
0xbfc1,0xf3e9,0x448d,0x9677,
0xbfa1,0xf115,0xee63,0x41c7,
0xbf4c,0x18de,0x6ccb,0xe78f,
};
static unsigned short Q1[32] = {
/*0x3ff0,0x0000,0x0000,0x0000,*/
0x402f,0x8f5a,0xa13b,0xd41b,
0x4046,0xb204,0x89ee,0x296f,
0x4044,0xa89a,0x228c,0x461c,
0x402e,0x15c7,0x9d87,0xd845,
0x4004,0x0985,0xa83c,0xba20,
0xbfc2,0x330c,0xcddb,0x0232,
0xbfa3,0x7f4e,0x456d,0xb31d,
0xbf4e,0x94bf,0x797d,0x061e,
};
#endif

/* Approximation for interval z = sqrt(-2 log y ) between 8 and 64
 * i.e., y between exp(-32) = 1.27e-14 and exp(-2048) = 3.67e-890.
 */

#ifdef UNK
static double P2[9] = {
  3.23774891776946035970E0,
  6.91522889068984211695E0,
  3.93881025292474443415E0,
  1.33303460815807542389E0,
  2.01485389549179081538E-1,
  1.23716634817820021358E-2,
  3.01581553508235416007E-4,
  2.65806974686737550832E-6,
  6.23974539184983293730E-9,
};
static double Q2[8] = {
/*  1.00000000000000000000E0,*/
  6.02427039364742014255E0,
  3.67983563856160859403E0,
  1.37702099489081330271E0,
  2.16236993594496635890E-1,
  1.34204006088543189037E-2,
  3.28014464682127739104E-4,
  2.89247864745380683936E-6,
  6.79019408009981274425E-9,
};
#endif
#ifdef DEC
static unsigned short P2[36] = {
0040517,0033507,0036236,0125641,
0040735,0044616,0014473,0140133,
0040574,0012567,0114535,0102541,
0040252,0120340,0143474,0150135,
0037516,0051057,0115361,0031211,
0036512,0131204,0101511,0125144,
0035236,0016627,0043160,0140216,
0033462,0060512,0060141,0010641,
0031326,0062541,0101304,0077706,
};
static unsigned short Q2[32] = {
/*0040200,0000000,0000000,0000000,*/
0040700,0143322,0132137,0040501,
0040553,0101155,0053221,0140257,
0040260,0041071,0052573,0010004,
0037535,0066472,0177261,0162330,
0036533,0160475,0066666,0036132,
0035253,0174533,0027771,0044027,
0033502,0016147,0117666,0063671,
0031351,0047455,0141663,0054751,
};
#endif
#ifdef IBMPC
static unsigned short P2[36] = {
0xd574,0xe793,0xe6e8,0x4009,
0x780b,0xc327,0xa931,0x401b,
0xb0ac,0xf32b,0x82ae,0x400f,
0x9a0c,0x18e7,0x541c,0x3ff5,
0x2651,0xf35e,0xca45,0x3fc9,
0x354d,0x9069,0x5650,0x3f89,
0x1812,0xe8ce,0xc3b2,0x3f33,
0x2234,0x4c0c,0x4c29,0x3ec6,
0x8ff9,0x3058,0xccac,0x3e3a,
};
static unsigned short Q2[32] = {
/*0x0000,0x0000,0x0000,0x3ff0,*/
0xe828,0x568b,0x18da,0x4018,
0x3816,0xaad2,0x704d,0x400d,
0x6200,0x2aaf,0x0847,0x3ff6,
0x3c9b,0x5fd6,0xada7,0x3fcb,
0xc78b,0xadb6,0x7c27,0x3f8b,
0x2903,0x65ff,0x7f2b,0x3f35,
0xccf7,0xf3f6,0x438c,0x3ec8,
0x6b3d,0xb876,0x29e5,0x3e3d,
};
#endif
#ifdef MIEEE
static unsigned short P2[36] = {
0x4009,0xe6e8,0xe793,0xd574,
0x401b,0xa931,0xc327,0x780b,
0x400f,0x82ae,0xf32b,0xb0ac,
0x3ff5,0x541c,0x18e7,0x9a0c,
0x3fc9,0xca45,0xf35e,0x2651,
0x3f89,0x5650,0x9069,0x354d,
0x3f33,0xc3b2,0xe8ce,0x1812,
0x3ec6,0x4c29,0x4c0c,0x2234,
0x3e3a,0xccac,0x3058,0x8ff9,
};
static unsigned short Q2[32] = {
/*0x3ff0,0x0000,0x0000,0x0000,*/
0x4018,0x18da,0x568b,0xe828,
0x400d,0x704d,0xaad2,0x3816,
0x3ff6,0x0847,0x2aaf,0x6200,
0x3fcb,0xada7,0x5fd6,0x3c9b,
0x3f8b,0x7c27,0xadb6,0xc78b,
0x3f35,0x7f2b,0x65ff,0x2903,
0x3ec8,0x438c,0xf3f6,0xccf7,
0x3e3d,0x29e5,0xb876,0x6b3d,
};
#endif

#ifdef ANSIPROT
extern double polevl ( double, void *, int );
extern double p1evl ( double, void *, int );
extern double log ( double );
extern double sqrt ( double );
#else
double polevl(), p1evl(), log(), sqrt();
#endif

double ndtri(y0)
double y0;
{
double x, y, z, y2, x0, x1;
int code;

if( y0 <= 0.0 )
	{
	mtherr( "ndtri", DOMAIN );
	return( -MAXNUM );
	}
if( y0 >= 1.0 )
	{
	mtherr( "ndtri", DOMAIN );
	return( MAXNUM );
	}
code = 1;
y = y0;
if( y > (1.0 - 0.13533528323661269189) ) /* 0.135... = exp(-2) */
	{
	y = 1.0 - y;
	code = 0;
	}

if( y > 0.13533528323661269189 )
	{
	y = y - 0.5;
	y2 = y * y;
	x = y + y * (y2 * polevl( y2, P0, 4)/p1evl( y2, Q0, 8 ));
	x = x * s2pi; 
	return(x);
	}

x = sqrt( -2.0 * log(y) );
x0 = x - log(x)/x;

z = 1.0/x;
if( x < 8.0 ) /* y > exp(-32) = 1.2664165549e-14 */
	x1 = z * polevl( z, P1, 8 )/p1evl( z, Q1, 8 );
else
	x1 = z * polevl( z, P2, 8 )/p1evl( z, Q2, 8 );
x = x0 - x1;
if( code != 0 )
	x = -x;
return( x );
}