summaryrefslogtreecommitdiff
path: root/libm/double/mtst.c
blob: 2559d2340fd9583121a3de6c850dcbaf59a6a985 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
/*   mtst.c
 Consistency tests for math functions.
 To get strict rounding rules on a 386 or 68000 computer,
 define SETPREC to 1.

 With NTRIALS=10000, the following are typical results for
 IEEE double precision arithmetic.

Consistency test of math functions.
Max and rms relative errors for 10000 random arguments.
x =   cbrt(   cube(x) ):  max = 0.00E+00   rms = 0.00E+00
x =   atan(    tan(x) ):  max = 2.21E-16   rms = 3.27E-17
x =    sin(   asin(x) ):  max = 2.13E-16   rms = 2.95E-17
x =   sqrt( square(x) ):  max = 0.00E+00   rms = 0.00E+00
x =    log(    exp(x) ):  max = 1.11E-16 A rms = 4.35E-18 A
x =   tanh(  atanh(x) ):  max = 2.22E-16   rms = 2.43E-17
x =  asinh(   sinh(x) ):  max = 2.05E-16   rms = 3.49E-18
x =  acosh(   cosh(x) ):  max = 1.43E-15 A rms = 1.54E-17 A
x =  log10(  exp10(x) ):  max = 5.55E-17 A rms = 1.27E-18 A
x = pow( pow(x,a),1/a ):  max = 7.60E-14   rms = 1.05E-15
x =    cos(   acos(x) ):  max = 2.22E-16 A rms = 6.90E-17 A
*/

/*
Cephes Math Library Release 2.8:  June, 2000
Copyright 1984, 1987, 1988, 2000 by Stephen L. Moshier
*/


#include <stdio.h>
#include <stdlib.h>
#include <math.h>

#ifndef NTRIALS
#define NTRIALS 10000
#endif

#define SETPREC 1
#define STRTST 0

#define WTRIALS (NTRIALS/5)

#ifdef ANSIPROT
extern double fabs ( double );
extern double sqrt ( double );
extern double cbrt ( double );
extern double exp ( double );
extern double log ( double );
extern double exp10 ( double );
extern double log10 ( double );
extern double tan ( double );
extern double atan ( double );
extern double sin ( double );
extern double asin ( double );
extern double cos ( double );
extern double acos ( double );
extern double pow ( double, double );
extern double tanh ( double );
extern double atanh ( double );
extern double sinh ( double );
extern double asinh ( double x );
extern double cosh ( double );
extern double acosh ( double );
extern double gamma ( double );
extern double lgam ( double );
#else
double fabs(), sqrt(), cbrt(), exp(), log();
double exp10(), log10(), tan(), atan();
double sin(), asin(), cos(), acos(), pow();
double tanh(), atanh(), sinh(), asinh(), cosh(), acosh();
double gamma(), lgam();
#endif

/* C9X spells lgam lgamma.  */
#define GLIBC2 0
#if GLIBC2
double lgamma (double);
#endif

#if SETPREC
int dprec();
#endif

int drand();
/* void exit(); */
/* int printf(); */


/* Provide inverses for square root and cube root: */
double square(x)
double x;
{
return( x * x );
}

double cube(x)
double x;
{
return( x * x * x );
}

/* lookup table for each function */
struct fundef
	{
	char *nam1;		/* the function */
	double (*name )();
	char *nam2;		/* its inverse  */
	double (*inv )();
	int nargs;		/* number of function arguments */
	int tstyp;		/* type code of the function */
	long ctrl;		/* relative error flag */
	double arg1w;		/* width of domain for 1st arg */
	double arg1l;		/* lower bound domain 1st arg */
	long arg1f;		/* flags, e.g. integer arg */
	double arg2w;		/* same info for args 2, 3, 4 */
	double arg2l;
	long arg2f;
/*
	double arg3w;
	double arg3l;
	long arg3f;
	double arg4w;
	double arg4l;
	long arg4f;
*/
	};


/* fundef.ctrl bits: */
#define RELERR 1

/* fundef.tstyp  test types: */
#define POWER 1 
#define ELLIP 2 
#define GAMMA 3
#define WRONK1 4
#define WRONK2 5
#define WRONK3 6

/* fundef.argNf  argument flag bits: */
#define INT 2
#define EXPSCAL 4

extern double MINLOG;
extern double MAXLOG;
extern double PI;
extern double PIO2;
/*
define MINLOG -170.0
define MAXLOG +170.0
define PI 3.14159265358979323846
define PIO2 1.570796326794896619
*/

#define NTESTS 12
struct fundef defs[NTESTS] = {
{"  cube",   cube,   "  cbrt",   cbrt, 1, 0, 1, 2002.0, -1001.0, 0,
0.0, 0.0, 0},
{"   tan",    tan,   "  atan",   atan, 1, 0, 1,    0.0,     0.0,  0,
0.0, 0.0, 0},
{"  asin",   asin,   "   sin",    sin, 1, 0, 1,   2.0,      -1.0,  0,
0.0, 0.0, 0},
{"square", square,   "  sqrt",   sqrt, 1, 0, 1, 170.0,    -85.0, EXPSCAL,
0.0, 0.0, 0},
{"   exp",    exp,   "   log",    log, 1, 0, 0, 340.0,    -170.0,  0,
0.0, 0.0, 0},
{" atanh",  atanh,   "  tanh",   tanh, 1, 0, 1,    2.0,    -1.0,  0,
0.0, 0.0, 0},
{"  sinh",   sinh,   " asinh",  asinh, 1, 0, 1, 340.0,   0.0,  0,
0.0, 0.0, 0},
{"  cosh",   cosh,   " acosh",  acosh, 1, 0, 0, 340.0,      0.0,  0,
0.0, 0.0, 0},
{" exp10",  exp10,   " log10",  log10, 1, 0, 0, 340.0,    -170.0,  0,
0.0, 0.0, 0},
{"pow",       pow,      "pow",    pow, 2, POWER, 1, 21.0, 0.0,   0,
42.0, -21.0, 0},
{"  acos",   acos,   "   cos",    cos, 1, 0, 0,   2.0,      -1.0,  0,
0.0, 0.0, 0},
#if GLIBC2
{ "gamma",  gamma,     "lgamma",   lgamma, 1, GAMMA, 0, 34.0, 0.0,   0,
0.0, 0.0, 0},
#else
{ "gamma",  gamma,     "lgam",   lgam, 1, GAMMA, 0, 34.0, 0.0,   0,
0.0, 0.0, 0},
#endif
};

static char *headrs[] = {
"x = %s( %s(x) ): ",
"x = %s( %s(x,a),1/a ): ",	/* power */
"Legendre %s, %s: ",		/* ellip */
"%s(x) = log(%s(x)): ",		/* gamma */
"Wronksian of %s, %s: ",
"Wronksian of %s, %s: ",
"Wronksian of %s, %s: "
};
 
static double yy1 = 0.0;
static double y2 = 0.0;
static double y3 = 0.0;
static double y4 = 0.0;
static double a = 0.0;
static double x = 0.0;
static double y = 0.0;
static double z = 0.0;
static double e = 0.0;
static double max = 0.0;
static double rmsa = 0.0;
static double rms = 0.0;
static double ave = 0.0;


int main()
{
double (*fun )();
double (*ifun )();
struct fundef *d;
int i, k, itst;
int m, ntr;

#if SETPREC
dprec();  /* set coprocessor precision */
#endif
ntr = NTRIALS;
printf( "Consistency test of math functions.\n" );
printf( "Max and rms relative errors for %d random arguments.\n",
	ntr );

/* Initialize machine dependent parameters: */
defs[1].arg1w = PI;
defs[1].arg1l = -PI/2.0;
/* Microsoft C has trouble with denormal numbers. */
#if 0
defs[3].arg1w = MAXLOG;
defs[3].arg1l = -MAXLOG/2.0;
defs[4].arg1w = 2*MAXLOG;
defs[4].arg1l = -MAXLOG;
#endif
defs[6].arg1w = 2.0*MAXLOG;
defs[6].arg1l = -MAXLOG;
defs[7].arg1w = MAXLOG;
defs[7].arg1l = 0.0;


/* Outer loop, on the test number: */

for( itst=STRTST; itst<NTESTS; itst++ )
{
d = &defs[itst];
k = 0;
m = 0;
max = 0.0;
rmsa = 0.0;
ave = 0.0;
fun = d->name;
ifun = d->inv;

/* Absolute error criterion starts with gamma function
 * (put all such at end of table)
 */
if( d->tstyp == GAMMA )
	printf( "Absolute error criterion (but relative if >1):\n" );

/* Smaller number of trials for Wronksians
 * (put them at end of list)
 */
if( d->tstyp == WRONK1 )
	{
	ntr = WTRIALS;
	printf( "Absolute error and only %d trials:\n", ntr );
	}

printf( headrs[d->tstyp], d->nam2, d->nam1 );

for( i=0; i<ntr; i++ )
{
m++;

/* make random number(s) in desired range(s) */
switch( d->nargs )
{

default:
goto illegn;
	
case 2:
drand( &a );
a = d->arg2w *  ( a - 1.0 )  +  d->arg2l;
if( d->arg2f & EXPSCAL )
	{
	a = exp(a);
	drand( &y2 );
	a -= 1.0e-13 * a * y2;
	}
if( d->arg2f & INT )
	{
	k = a + 0.25;
	a = k;
	}

case 1:
drand( &x );
x = d->arg1w *  ( x - 1.0 )  +  d->arg1l;
if( d->arg1f & EXPSCAL )
	{
	x = exp(x);
	drand( &a );
	x += 1.0e-13 * x * a;
	}
}


/* compute function under test */
switch( d->nargs )
	{
	case 1:
	switch( d->tstyp )
		{
		case ELLIP:
		yy1 = ( *(fun) )(x);
		y2 = ( *(fun) )(1.0-x);
		y3 = ( *(ifun) )(x);
		y4 = ( *(ifun) )(1.0-x);
		break;

#if 1
		case GAMMA:
#if GLIBC2
		y = lgamma(x);
#else
		y = lgam(x);
#endif
		x = log( gamma(x) );
		break;
#endif
		default:
		z = ( *(fun) )(x);
		y = ( *(ifun) )(z);
		}
	break;
	
	case 2:
	if( d->arg2f & INT )
		{
		switch( d->tstyp )
			{
			case WRONK1:
			yy1 = (*fun)( k, x ); /* jn */
			y2 = (*fun)( k+1, x );
			y3 = (*ifun)( k, x ); /* yn */
			y4 = (*ifun)( k+1, x );	
			break;

			case WRONK2:
			yy1 = (*fun)( a, x ); /* iv */
			y2 = (*fun)( a+1.0, x );
			y3 = (*ifun)( k, x ); /* kn */	
			y4 = (*ifun)( k+1, x );	
			break;

			default:
			z = (*fun)( k, x );
			y = (*ifun)( k, z );
			}
		}
	else
		{
		if( d->tstyp == POWER )
			{
			z = (*fun)( x, a );
			y = (*ifun)( z, 1.0/a );
			}
		else
			{
			z = (*fun)( a, x );
			y = (*ifun)( a, z );
			}
		}
	break;


	default:
illegn:
	printf( "Illegal nargs= %d", d->nargs );
	exit(1);
	}	

switch( d->tstyp )
	{
	case WRONK1:
	e = (y2*y3 - yy1*y4) - 2.0/(PI*x); /* Jn, Yn */
	break;

	case WRONK2:
	e = (y2*y3 + yy1*y4) - 1.0/x; /* In, Kn */
	break;
	
	case ELLIP:
	e = (yy1-y3)*y4 + y3*y2 - PIO2;
	break;

	default:
	e = y - x;
	break;
	}

if( d->ctrl & RELERR )
	e /= x;
else
	{
	if( fabs(x) > 1.0 )
		e /= x;
	}

ave += e;
/* absolute value of error */
if( e < 0 )
	e = -e;

/* peak detect the error */
if( e > max )
	{
	max = e;

	if( e > 1.0e-10 )
		{
		printf("x %.6E z %.6E y %.6E max %.4E\n",
		 x, z, y, max);
		if( d->tstyp == POWER )
			{
			printf( "a %.6E\n", a );
			}
		if( d->tstyp >= WRONK1 )
			{
		printf( "yy1 %.4E y2 %.4E y3 %.4E y4 %.4E k %d x %.4E\n",
		 yy1, y2, y3, y4, k, x );
			}
		}

/*
	printf("%.8E %.8E %.4E %6ld \n", x, y, max, n);
	printf("%d %.8E %.8E %.4E %6ld \n", k, x, y, max, n);
	printf("%.6E %.6E %.6E %.4E %6ld \n", a, x, y, max, n);
	printf("%.6E %.6E %.6E %.6E %.4E %6ld \n", a, b, x, y, max, n);
	printf("%.4E %.4E %.4E %.4E %.4E %.4E %6ld \n",
		a, b, c, x, y, max, n);
*/
	}

/* accumulate rms error	*/
e *= 1.0e16;	/* adjust range */
rmsa += e * e;	/* accumulate the square of the error */
}

/* report after NTRIALS trials */
rms = 1.0e-16 * sqrt( rmsa/m );
if(d->ctrl & RELERR)
	printf(" max = %.2E   rms = %.2E\n", max, rms );
else
	printf(" max = %.2E A rms = %.2E A\n", max, rms );
} /* loop on itst */

exit(0);
}