summaryrefslogtreecommitdiff
path: root/libm/double/log10.c
blob: 7dc72e253d60dc634b8c936df7d1224fb6eb5bea (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
/*							log10.c
 *
 *	Common logarithm
 *
 *
 *
 * SYNOPSIS:
 *
 * double x, y, log10();
 *
 * y = log10( x );
 *
 *
 *
 * DESCRIPTION:
 *
 * Returns logarithm to the base 10 of x.
 *
 * The argument is separated into its exponent and fractional
 * parts.  The logarithm of the fraction is approximated by
 *
 *     log(1+x) = x - 0.5 x**2 + x**3 P(x)/Q(x).
 *
 *
 *
 * ACCURACY:
 *
 *                      Relative error:
 * arithmetic   domain     # trials      peak         rms
 *    IEEE      0.5, 2.0     30000      1.5e-16     5.0e-17
 *    IEEE      0, MAXNUM    30000      1.4e-16     4.8e-17
 *    DEC       1, MAXNUM    50000      2.5e-17     6.0e-18
 *
 * In the tests over the interval [1, MAXNUM], the logarithms
 * of the random arguments were uniformly distributed over
 * [0, MAXLOG].
 *
 * ERROR MESSAGES:
 *
 * log10 singularity:  x = 0; returns -INFINITY
 * log10 domain:       x < 0; returns NAN
 */

/*
Cephes Math Library Release 2.8:  June, 2000
Copyright 1984, 1995, 2000 by Stephen L. Moshier
*/

#include <math.h>
static char fname[] = {"log10"};

/* Coefficients for log(1+x) = x - x**2/2 + x**3 P(x)/Q(x)
 * 1/sqrt(2) <= x < sqrt(2)
 */
#ifdef UNK
static double P[] = {
  4.58482948458143443514E-5,
  4.98531067254050724270E-1,
  6.56312093769992875930E0,
  2.97877425097986925891E1,
  6.06127134467767258030E1,
  5.67349287391754285487E1,
  1.98892446572874072159E1
};
static double Q[] = {
/* 1.00000000000000000000E0, */
  1.50314182634250003249E1,
  8.27410449222435217021E1,
  2.20664384982121929218E2,
  3.07254189979530058263E2,
  2.14955586696422947765E2,
  5.96677339718622216300E1
};
#endif

#ifdef DEC
static unsigned short P[] = {
0034500,0046473,0051374,0135174,
0037777,0037566,0145712,0150321,
0040722,0002426,0031543,0123107,
0041356,0046513,0170752,0004346,
0041562,0071553,0023536,0163343,
0041542,0170221,0024316,0114216,
0041237,0016454,0046611,0104602
};
static unsigned short Q[] = {
/*0040200,0000000,0000000,0000000,*/
0041160,0100260,0067736,0102424,
0041645,0075552,0036563,0147072,
0042134,0125025,0021132,0025320,
0042231,0120211,0046030,0103271,
0042126,0172241,0052151,0120426,
0041556,0125702,0072116,0047103
};
#endif

#ifdef IBMPC
static unsigned short P[] = {
0x974f,0x6a5f,0x09a7,0x3f08,
0x5a1a,0xd979,0xe7ee,0x3fdf,
0x74c9,0xc66c,0x40a2,0x401a,
0x411d,0x7e3d,0xc9a9,0x403d,
0xdcdc,0x64eb,0x4e6d,0x404e,
0xd312,0x2519,0x5e12,0x404c,
0x3130,0x89b1,0xe3a5,0x4033
};
static unsigned short Q[] = {
/*0x0000,0x0000,0x0000,0x3ff0,*/
0xd0a2,0x0dfb,0x1016,0x402e,
0x79c7,0x47ae,0xaf6d,0x4054,
0x455a,0xa44b,0x9542,0x406b,
0x10d7,0x2983,0x3411,0x4073,
0x3423,0x2a8d,0xde94,0x406a,
0xc9c8,0x4e89,0xd578,0x404d
};
#endif

#ifdef MIEEE
static unsigned short P[] = {
0x3f08,0x09a7,0x6a5f,0x974f,
0x3fdf,0xe7ee,0xd979,0x5a1a,
0x401a,0x40a2,0xc66c,0x74c9,
0x403d,0xc9a9,0x7e3d,0x411d,
0x404e,0x4e6d,0x64eb,0xdcdc,
0x404c,0x5e12,0x2519,0xd312,
0x4033,0xe3a5,0x89b1,0x3130
};
static unsigned short Q[] = {
0x402e,0x1016,0x0dfb,0xd0a2,
0x4054,0xaf6d,0x47ae,0x79c7,
0x406b,0x9542,0xa44b,0x455a,
0x4073,0x3411,0x2983,0x10d7,
0x406a,0xde94,0x2a8d,0x3423,
0x404d,0xd578,0x4e89,0xc9c8
};
#endif

#define SQRTH 0.70710678118654752440
#define L102A 3.0078125E-1
#define L102B 2.48745663981195213739E-4
#define L10EA 4.3359375E-1
#define L10EB 7.00731903251827651129E-4

#ifdef ANSIPROT
extern double frexp ( double, int * );
extern double ldexp ( double, int );
extern double polevl ( double, void *, int );
extern double p1evl ( double, void *, int );
extern int isnan ( double );
extern int isfinite ( double );
#else
double frexp(), ldexp(), polevl(), p1evl();
int isnan(), isfinite();
#endif
extern double LOGE2, SQRT2, INFINITY, NAN;

double log10(x)
double x;
{
VOLATILE double z;
double y;
#ifdef DEC
short *q;
#endif
int e;

#ifdef NANS
if( isnan(x) )
	return(x);
#endif
#ifdef INFINITIES
if( x == INFINITY )
	return(x);
#endif
/* Test for domain */
if( x <= 0.0 )
	{
	if( x == 0.0 )
	        {
		mtherr( fname, SING );
		return( -INFINITY );
	        }
	else
	        {
		mtherr( fname, DOMAIN );
		return( NAN );
	        }
	}

/* separate mantissa from exponent */

#ifdef DEC
q = (short *)&x;
e = *q;			/* short containing exponent */
e = ((e >> 7) & 0377) - 0200;	/* the exponent */
*q &= 0177;	/* strip exponent from x */
*q |= 040000;	/* x now between 0.5 and 1 */
#endif

#ifdef IBMPC
x = frexp( x, &e );
/*
q = (short *)&x;
q += 3;
e = *q;
e = ((e >> 4) & 0x0fff) - 0x3fe;
*q &= 0x0f;
*q |= 0x3fe0;
*/
#endif

/* Equivalent C language standard library function: */
#ifdef UNK
x = frexp( x, &e );
#endif

#ifdef MIEEE
x = frexp( x, &e );
#endif

/* logarithm using log(1+x) = x - .5x**2 + x**3 P(x)/Q(x) */

if( x < SQRTH )
	{
	e -= 1;
	x = ldexp( x, 1 ) - 1.0; /*  2x - 1  */
	}	
else
	{
	x = x - 1.0;
	}


/* rational form */
z = x*x;
y = x * ( z * polevl( x, P, 6 ) / p1evl( x, Q, 6 ) );
y = y - ldexp( z, -1 );   /*  y - 0.5 * x**2  */

/* multiply log of fraction by log10(e)
 * and base 2 exponent by log10(2)
 */
z = (x + y) * L10EB;  /* accumulate terms in order of size */
z += y * L10EA;
z += x * L10EA;
z += e * L102B;
z += e * L102A;


return( z );
}