summaryrefslogtreecommitdiff
path: root/libm/double/k0.c
blob: 7d09cb4a19047ac6ffcc43911ce58866e24fe73d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
/*							k0.c
 *
 *	Modified Bessel function, third kind, order zero
 *
 *
 *
 * SYNOPSIS:
 *
 * double x, y, k0();
 *
 * y = k0( x );
 *
 *
 *
 * DESCRIPTION:
 *
 * Returns modified Bessel function of the third kind
 * of order zero of the argument.
 *
 * The range is partitioned into the two intervals [0,8] and
 * (8, infinity).  Chebyshev polynomial expansions are employed
 * in each interval.
 *
 *
 *
 * ACCURACY:
 *
 * Tested at 2000 random points between 0 and 8.  Peak absolute
 * error (relative when K0 > 1) was 1.46e-14; rms, 4.26e-15.
 *                      Relative error:
 * arithmetic   domain     # trials      peak         rms
 *    DEC       0, 30        3100       1.3e-16     2.1e-17
 *    IEEE      0, 30       30000       1.2e-15     1.6e-16
 *
 * ERROR MESSAGES:
 *
 *   message         condition      value returned
 *  K0 domain          x <= 0          MAXNUM
 *
 */
/*							k0e()
 *
 *	Modified Bessel function, third kind, order zero,
 *	exponentially scaled
 *
 *
 *
 * SYNOPSIS:
 *
 * double x, y, k0e();
 *
 * y = k0e( x );
 *
 *
 *
 * DESCRIPTION:
 *
 * Returns exponentially scaled modified Bessel function
 * of the third kind of order zero of the argument.
 *
 *
 *
 * ACCURACY:
 *
 *                      Relative error:
 * arithmetic   domain     # trials      peak         rms
 *    IEEE      0, 30       30000       1.4e-15     1.4e-16
 * See k0().
 *
 */

/*
Cephes Math Library Release 2.8:  June, 2000
Copyright 1984, 1987, 2000 by Stephen L. Moshier
*/

#include <math.h>

/* Chebyshev coefficients for K0(x) + log(x/2) I0(x)
 * in the interval [0,2].  The odd order coefficients are all
 * zero; only the even order coefficients are listed.
 * 
 * lim(x->0){ K0(x) + log(x/2) I0(x) } = -EUL.
 */

#ifdef UNK
static double A[] =
{
 1.37446543561352307156E-16,
 4.25981614279661018399E-14,
 1.03496952576338420167E-11,
 1.90451637722020886025E-9,
 2.53479107902614945675E-7,
 2.28621210311945178607E-5,
 1.26461541144692592338E-3,
 3.59799365153615016266E-2,
 3.44289899924628486886E-1,
-5.35327393233902768720E-1
};
#endif

#ifdef DEC
static unsigned short A[] = {
0023036,0073417,0032477,0165673,
0025077,0154126,0016046,0012517,
0027066,0011342,0035211,0005041,
0031002,0160233,0037454,0050224,
0032610,0012747,0037712,0173741,
0034277,0144007,0172147,0162375,
0035645,0140563,0125431,0165626,
0037023,0057662,0125124,0102051,
0037660,0043304,0004411,0166707,
0140011,0005467,0047227,0130370
};
#endif

#ifdef IBMPC
static unsigned short A[] = {
0xfd77,0xe6a7,0xcee1,0x3ca3,
0xc2aa,0xc384,0xfb0a,0x3d27,
0x2144,0x4751,0xc25c,0x3da6,
0x8a13,0x67e5,0x5c13,0x3e20,
0x5efc,0xe7f9,0x02bc,0x3e91,
0xfca0,0xfe8c,0xf900,0x3ef7,
0x3d73,0x7563,0xb82e,0x3f54,
0x9085,0x554a,0x6bf6,0x3fa2,
0x3db9,0x8121,0x08d8,0x3fd6,
0xf61f,0xe9d2,0x2166,0xbfe1
};
#endif

#ifdef MIEEE
static unsigned short A[] = {
0x3ca3,0xcee1,0xe6a7,0xfd77,
0x3d27,0xfb0a,0xc384,0xc2aa,
0x3da6,0xc25c,0x4751,0x2144,
0x3e20,0x5c13,0x67e5,0x8a13,
0x3e91,0x02bc,0xe7f9,0x5efc,
0x3ef7,0xf900,0xfe8c,0xfca0,
0x3f54,0xb82e,0x7563,0x3d73,
0x3fa2,0x6bf6,0x554a,0x9085,
0x3fd6,0x08d8,0x8121,0x3db9,
0xbfe1,0x2166,0xe9d2,0xf61f
};
#endif



/* Chebyshev coefficients for exp(x) sqrt(x) K0(x)
 * in the inverted interval [2,infinity].
 * 
 * lim(x->inf){ exp(x) sqrt(x) K0(x) } = sqrt(pi/2).
 */

#ifdef UNK
static double B[] = {
 5.30043377268626276149E-18,
-1.64758043015242134646E-17,
 5.21039150503902756861E-17,
-1.67823109680541210385E-16,
 5.51205597852431940784E-16,
-1.84859337734377901440E-15,
 6.34007647740507060557E-15,
-2.22751332699166985548E-14,
 8.03289077536357521100E-14,
-2.98009692317273043925E-13,
 1.14034058820847496303E-12,
-4.51459788337394416547E-12,
 1.85594911495471785253E-11,
-7.95748924447710747776E-11,
 3.57739728140030116597E-10,
-1.69753450938905987466E-9,
 8.57403401741422608519E-9,
-4.66048989768794782956E-8,
 2.76681363944501510342E-7,
-1.83175552271911948767E-6,
 1.39498137188764993662E-5,
-1.28495495816278026384E-4,
 1.56988388573005337491E-3,
-3.14481013119645005427E-2,
 2.44030308206595545468E0
};
#endif

#ifdef DEC
static unsigned short B[] = {
0021703,0106456,0076144,0173406,
0122227,0173144,0116011,0030033,
0022560,0044562,0006506,0067642,
0123101,0076243,0123273,0131013,
0023436,0157713,0056243,0141331,
0124005,0032207,0063726,0164664,
0024344,0066342,0051756,0162300,
0124710,0121365,0154053,0077022,
0025264,0161166,0066246,0077420,
0125647,0141671,0006443,0103212,
0026240,0076431,0077147,0160445,
0126636,0153741,0174002,0105031,
0027243,0040102,0035375,0163073,
0127656,0176256,0113476,0044653,
0030304,0125544,0006377,0130104,
0130751,0047257,0110537,0127324,
0031423,0046400,0014772,0012164,
0132110,0025240,0155247,0112570,
0032624,0105314,0007437,0021574,
0133365,0155243,0174306,0116506,
0034152,0004776,0061643,0102504,
0135006,0136277,0036104,0175023,
0035715,0142217,0162474,0115022,
0137000,0147671,0065177,0134356,
0040434,0026754,0175163,0044070
};
#endif

#ifdef IBMPC
static unsigned short B[] = {
0x9ee1,0xcf8c,0x71a5,0x3c58,
0x2603,0x9381,0xfecc,0xbc72,
0xcdf4,0x41a8,0x092e,0x3c8e,
0x7641,0x74d7,0x2f94,0xbca8,
0x785b,0x6b94,0xdbf9,0x3cc3,
0xdd36,0xecfa,0xa690,0xbce0,
0xdc98,0x4a7d,0x8d9c,0x3cfc,
0x6fc2,0xbb05,0x145e,0xbd19,
0xcfe2,0xcd94,0x9c4e,0x3d36,
0x70d1,0x21a4,0xf877,0xbd54,
0xfc25,0x2fcc,0x0fa3,0x3d74,
0x5143,0x3f00,0xdafc,0xbd93,
0xbcc7,0x475f,0x6808,0x3db4,
0xc935,0xd2e7,0xdf95,0xbdd5,
0xf608,0x819f,0x956c,0x3df8,
0xf5db,0xf22b,0x29d5,0xbe1d,
0x428e,0x033f,0x69a0,0x3e42,
0xf2af,0x1b54,0x0554,0xbe69,
0xe46f,0x81e3,0x9159,0x3e92,
0xd3a9,0x7f18,0xbb54,0xbebe,
0x70a9,0xcc74,0x413f,0x3eed,
0x9f42,0xe788,0xd797,0xbf20,
0x9342,0xfca7,0xb891,0x3f59,
0xf71e,0x2d4f,0x19f7,0xbfa0,
0x6907,0x9f4e,0x85bd,0x4003
};
#endif

#ifdef MIEEE
static unsigned short B[] = {
0x3c58,0x71a5,0xcf8c,0x9ee1,
0xbc72,0xfecc,0x9381,0x2603,
0x3c8e,0x092e,0x41a8,0xcdf4,
0xbca8,0x2f94,0x74d7,0x7641,
0x3cc3,0xdbf9,0x6b94,0x785b,
0xbce0,0xa690,0xecfa,0xdd36,
0x3cfc,0x8d9c,0x4a7d,0xdc98,
0xbd19,0x145e,0xbb05,0x6fc2,
0x3d36,0x9c4e,0xcd94,0xcfe2,
0xbd54,0xf877,0x21a4,0x70d1,
0x3d74,0x0fa3,0x2fcc,0xfc25,
0xbd93,0xdafc,0x3f00,0x5143,
0x3db4,0x6808,0x475f,0xbcc7,
0xbdd5,0xdf95,0xd2e7,0xc935,
0x3df8,0x956c,0x819f,0xf608,
0xbe1d,0x29d5,0xf22b,0xf5db,
0x3e42,0x69a0,0x033f,0x428e,
0xbe69,0x0554,0x1b54,0xf2af,
0x3e92,0x9159,0x81e3,0xe46f,
0xbebe,0xbb54,0x7f18,0xd3a9,
0x3eed,0x413f,0xcc74,0x70a9,
0xbf20,0xd797,0xe788,0x9f42,
0x3f59,0xb891,0xfca7,0x9342,
0xbfa0,0x19f7,0x2d4f,0xf71e,
0x4003,0x85bd,0x9f4e,0x6907
};
#endif

/*							k0.c	*/
#ifdef ANSIPROT 
extern double chbevl ( double, void *, int );
extern double exp ( double );
extern double i0 ( double );
extern double log ( double );
extern double sqrt ( double );
#else
double chbevl(), exp(), i0(), log(), sqrt();
#endif
extern double PI;
extern double MAXNUM;

double k0(x)
double x;
{
double y, z;

if( x <= 0.0 )
	{
	mtherr( "k0", DOMAIN );
	return( MAXNUM );
	}

if( x <= 2.0 )
	{
	y = x * x - 2.0;
	y = chbevl( y, A, 10 ) - log( 0.5 * x ) * i0(x);
	return( y );
	}
z = 8.0/x - 2.0;
y = exp(-x) * chbevl( z, B, 25 ) / sqrt(x);
return(y);
}




double k0e( x )
double x;
{
double y;

if( x <= 0.0 )
	{
	mtherr( "k0e", DOMAIN );
	return( MAXNUM );
	}

if( x <= 2.0 )
	{
	y = x * x - 2.0;
	y = chbevl( y, A, 10 ) - log( 0.5 * x ) * i0(x);
	return( y * exp(x) );
	}

y = chbevl( 8.0/x - 2.0, B, 25 ) / sqrt(x);
return(y);
}