1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
|
/* jn.c
*
* Bessel function of integer order
*
*
*
* SYNOPSIS:
*
* int n;
* double x, y, jn();
*
* y = jn( n, x );
*
*
*
* DESCRIPTION:
*
* Returns Bessel function of order n, where n is a
* (possibly negative) integer.
*
* The ratio of jn(x) to j0(x) is computed by backward
* recurrence. First the ratio jn/jn-1 is found by a
* continued fraction expansion. Then the recurrence
* relating successive orders is applied until j0 or j1 is
* reached.
*
* If n = 0 or 1 the routine for j0 or j1 is called
* directly.
*
*
*
* ACCURACY:
*
* Absolute error:
* arithmetic range # trials peak rms
* DEC 0, 30 5500 6.9e-17 9.3e-18
* IEEE 0, 30 5000 4.4e-16 7.9e-17
*
*
* Not suitable for large n or x. Use jv() instead.
*
*/
/* jn.c
Cephes Math Library Release 2.8: June, 2000
Copyright 1984, 1987, 2000 by Stephen L. Moshier
*/
#include <math.h>
#ifdef ANSIPROT
extern double fabs ( double );
extern double j0 ( double );
extern double j1 ( double );
#else
double fabs(), j0(), j1();
#endif
extern double MACHEP;
double jn( n, x )
int n;
double x;
{
double pkm2, pkm1, pk, xk, r, ans;
int k, sign;
if( n < 0 )
{
n = -n;
if( (n & 1) == 0 ) /* -1**n */
sign = 1;
else
sign = -1;
}
else
sign = 1;
if( x < 0.0 )
{
if( n & 1 )
sign = -sign;
x = -x;
}
if( n == 0 )
return( sign * j0(x) );
if( n == 1 )
return( sign * j1(x) );
if( n == 2 )
return( sign * (2.0 * j1(x) / x - j0(x)) );
if( x < MACHEP )
return( 0.0 );
/* continued fraction */
#ifdef DEC
k = 56;
#else
k = 53;
#endif
pk = 2 * (n + k);
ans = pk;
xk = x * x;
do
{
pk -= 2.0;
ans = pk - (xk/ans);
}
while( --k > 0 );
ans = x/ans;
/* backward recurrence */
pk = 1.0;
pkm1 = 1.0/ans;
k = n-1;
r = 2 * k;
do
{
pkm2 = (pkm1 * r - pk * x) / x;
pk = pkm1;
pkm1 = pkm2;
r -= 2.0;
}
while( --k > 0 );
if( fabs(pk) > fabs(pkm1) )
ans = j1(x)/pk;
else
ans = j0(x)/pkm1;
return( sign * ans );
}
|