1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
|
/* igami()
*
* Inverse of complemented imcomplete gamma integral
*
*
*
* SYNOPSIS:
*
* double a, x, p, igami();
*
* x = igami( a, p );
*
* DESCRIPTION:
*
* Given p, the function finds x such that
*
* igamc( a, x ) = p.
*
* Starting with the approximate value
*
* 3
* x = a t
*
* where
*
* t = 1 - d - ndtri(p) sqrt(d)
*
* and
*
* d = 1/9a,
*
* the routine performs up to 10 Newton iterations to find the
* root of igamc(a,x) - p = 0.
*
* ACCURACY:
*
* Tested at random a, p in the intervals indicated.
*
* a p Relative error:
* arithmetic domain domain # trials peak rms
* IEEE 0.5,100 0,0.5 100000 1.0e-14 1.7e-15
* IEEE 0.01,0.5 0,0.5 100000 9.0e-14 3.4e-15
* IEEE 0.5,10000 0,0.5 20000 2.3e-13 3.8e-14
*/
/*
Cephes Math Library Release 2.8: June, 2000
Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier
*/
#include <math.h>
extern double MACHEP, MAXNUM, MAXLOG, MINLOG;
#ifdef ANSIPROT
extern double igamc ( double, double );
extern double ndtri ( double );
extern double exp ( double );
extern double fabs ( double );
extern double log ( double );
extern double sqrt ( double );
extern double lgam ( double );
#else
double igamc(), ndtri(), exp(), fabs(), log(), sqrt(), lgam();
#endif
double igami( a, y0 )
double a, y0;
{
double x0, x1, x, yl, yh, y, d, lgm, dithresh;
int i, dir;
/* bound the solution */
x0 = MAXNUM;
yl = 0;
x1 = 0;
yh = 1.0;
dithresh = 5.0 * MACHEP;
/* approximation to inverse function */
d = 1.0/(9.0*a);
y = ( 1.0 - d - ndtri(y0) * sqrt(d) );
x = a * y * y * y;
lgm = lgam(a);
for( i=0; i<10; i++ )
{
if( x > x0 || x < x1 )
goto ihalve;
y = igamc(a,x);
if( y < yl || y > yh )
goto ihalve;
if( y < y0 )
{
x0 = x;
yl = y;
}
else
{
x1 = x;
yh = y;
}
/* compute the derivative of the function at this point */
d = (a - 1.0) * log(x) - x - lgm;
if( d < -MAXLOG )
goto ihalve;
d = -exp(d);
/* compute the step to the next approximation of x */
d = (y - y0)/d;
if( fabs(d/x) < MACHEP )
goto done;
x = x - d;
}
/* Resort to interval halving if Newton iteration did not converge. */
ihalve:
d = 0.0625;
if( x0 == MAXNUM )
{
if( x <= 0.0 )
x = 1.0;
while( x0 == MAXNUM )
{
x = (1.0 + d) * x;
y = igamc( a, x );
if( y < y0 )
{
x0 = x;
yl = y;
break;
}
d = d + d;
}
}
d = 0.5;
dir = 0;
for( i=0; i<400; i++ )
{
x = x1 + d * (x0 - x1);
y = igamc( a, x );
lgm = (x0 - x1)/(x1 + x0);
if( fabs(lgm) < dithresh )
break;
lgm = (y - y0)/y0;
if( fabs(lgm) < dithresh )
break;
if( x <= 0.0 )
break;
if( y >= y0 )
{
x1 = x;
yh = y;
if( dir < 0 )
{
dir = 0;
d = 0.5;
}
else if( dir > 1 )
d = 0.5 * d + 0.5;
else
d = (y0 - yl)/(yh - yl);
dir += 1;
}
else
{
x0 = x;
yl = y;
if( dir > 0 )
{
dir = 0;
d = 0.5;
}
else if( dir < -1 )
d = 0.5 * d;
else
d = (y0 - yl)/(yh - yl);
dir -= 1;
}
}
if( x == 0.0 )
mtherr( "igami", UNDERFLOW );
done:
return( x );
}
|