summaryrefslogtreecommitdiff
path: root/libm/double/gamma.c
blob: 341b4e9155e544995b51f3aac8eeb4cfd860cb7c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
/*							gamma.c
 *
 *	Gamma function
 *
 *
 *
 * SYNOPSIS:
 *
 * double x, y, gamma();
 * extern int sgngam;
 *
 * y = gamma( x );
 *
 *
 *
 * DESCRIPTION:
 *
 * Returns gamma function of the argument.  The result is
 * correctly signed, and the sign (+1 or -1) is also
 * returned in a global (extern) variable named sgngam.
 * This variable is also filled in by the logarithmic gamma
 * function lgam().
 *
 * Arguments |x| <= 34 are reduced by recurrence and the function
 * approximated by a rational function of degree 6/7 in the
 * interval (2,3).  Large arguments are handled by Stirling's
 * formula. Large negative arguments are made positive using
 * a reflection formula.  
 *
 *
 * ACCURACY:
 *
 *                      Relative error:
 * arithmetic   domain     # trials      peak         rms
 *    DEC      -34, 34      10000       1.3e-16     2.5e-17
 *    IEEE    -170,-33      20000       2.3e-15     3.3e-16
 *    IEEE     -33,  33     20000       9.4e-16     2.2e-16
 *    IEEE      33, 171.6   20000       2.3e-15     3.2e-16
 *
 * Error for arguments outside the test range will be larger
 * owing to error amplification by the exponential function.
 *
 */
/*							lgam()
 *
 *	Natural logarithm of gamma function
 *
 *
 *
 * SYNOPSIS:
 *
 * double x, y, lgam();
 * extern int sgngam;
 *
 * y = lgam( x );
 *
 *
 *
 * DESCRIPTION:
 *
 * Returns the base e (2.718...) logarithm of the absolute
 * value of the gamma function of the argument.
 * The sign (+1 or -1) of the gamma function is returned in a
 * global (extern) variable named sgngam.
 *
 * For arguments greater than 13, the logarithm of the gamma
 * function is approximated by the logarithmic version of
 * Stirling's formula using a polynomial approximation of
 * degree 4. Arguments between -33 and +33 are reduced by
 * recurrence to the interval [2,3] of a rational approximation.
 * The cosecant reflection formula is employed for arguments
 * less than -33.
 *
 * Arguments greater than MAXLGM return MAXNUM and an error
 * message.  MAXLGM = 2.035093e36 for DEC
 * arithmetic or 2.556348e305 for IEEE arithmetic.
 *
 *
 *
 * ACCURACY:
 *
 *
 * arithmetic      domain        # trials     peak         rms
 *    DEC     0, 3                  7000     5.2e-17     1.3e-17
 *    DEC     2.718, 2.035e36       5000     3.9e-17     9.9e-18
 *    IEEE    0, 3                 28000     5.4e-16     1.1e-16
 *    IEEE    2.718, 2.556e305     40000     3.5e-16     8.3e-17
 * The error criterion was relative when the function magnitude
 * was greater than one but absolute when it was less than one.
 *
 * The following test used the relative error criterion, though
 * at certain points the relative error could be much higher than
 * indicated.
 *    IEEE    -200, -4             10000     4.8e-16     1.3e-16
 *
 */

/*							gamma.c	*/
/*	gamma function	*/

/*
Cephes Math Library Release 2.8:  June, 2000
Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier
*/


#include <math.h>

#ifdef UNK
static double P[] = {
  1.60119522476751861407E-4,
  1.19135147006586384913E-3,
  1.04213797561761569935E-2,
  4.76367800457137231464E-2,
  2.07448227648435975150E-1,
  4.94214826801497100753E-1,
  9.99999999999999996796E-1
};
static double Q[] = {
-2.31581873324120129819E-5,
 5.39605580493303397842E-4,
-4.45641913851797240494E-3,
 1.18139785222060435552E-2,
 3.58236398605498653373E-2,
-2.34591795718243348568E-1,
 7.14304917030273074085E-2,
 1.00000000000000000320E0
};
#define MAXGAM 171.624376956302725
static double LOGPI = 1.14472988584940017414;
#endif

#ifdef DEC
static unsigned short P[] = {
0035047,0162701,0146301,0005234,
0035634,0023437,0032065,0176530,
0036452,0137157,0047330,0122574,
0037103,0017310,0143041,0017232,
0037524,0066516,0162563,0164605,
0037775,0004671,0146237,0014222,
0040200,0000000,0000000,0000000
};
static unsigned short Q[] = {
0134302,0041724,0020006,0116565,
0035415,0072121,0044251,0025634,
0136222,0003447,0035205,0121114,
0036501,0107552,0154335,0104271,
0037022,0135717,0014776,0171471,
0137560,0034324,0165024,0037021,
0037222,0045046,0047151,0161213,
0040200,0000000,0000000,0000000
};
#define MAXGAM 34.84425627277176174
static unsigned short LPI[4] = {
0040222,0103202,0043475,0006750,
};
#define LOGPI *(double *)LPI
#endif

#ifdef IBMPC
static unsigned short P[] = {
0x2153,0x3998,0xfcb8,0x3f24,
0xbfab,0xe686,0x84e3,0x3f53,
0x14b0,0xe9db,0x57cd,0x3f85,
0x23d3,0x18c4,0x63d9,0x3fa8,
0x7d31,0xdcae,0x8da9,0x3fca,
0xe312,0x3993,0xa137,0x3fdf,
0x0000,0x0000,0x0000,0x3ff0
};
static unsigned short Q[] = {
0xd3af,0x8400,0x487a,0xbef8,
0x2573,0x2915,0xae8a,0x3f41,
0xb44a,0xe750,0x40e4,0xbf72,
0xb117,0x5b1b,0x31ed,0x3f88,
0xde67,0xe33f,0x5779,0x3fa2,
0x87c2,0x9d42,0x071a,0xbfce,
0x3c51,0xc9cd,0x4944,0x3fb2,
0x0000,0x0000,0x0000,0x3ff0
};
#define MAXGAM 171.624376956302725
static unsigned short LPI[4] = {
0xa1bd,0x48e7,0x50d0,0x3ff2,
};
#define LOGPI *(double *)LPI
#endif 

#ifdef MIEEE
static unsigned short P[] = {
0x3f24,0xfcb8,0x3998,0x2153,
0x3f53,0x84e3,0xe686,0xbfab,
0x3f85,0x57cd,0xe9db,0x14b0,
0x3fa8,0x63d9,0x18c4,0x23d3,
0x3fca,0x8da9,0xdcae,0x7d31,
0x3fdf,0xa137,0x3993,0xe312,
0x3ff0,0x0000,0x0000,0x0000
};
static unsigned short Q[] = {
0xbef8,0x487a,0x8400,0xd3af,
0x3f41,0xae8a,0x2915,0x2573,
0xbf72,0x40e4,0xe750,0xb44a,
0x3f88,0x31ed,0x5b1b,0xb117,
0x3fa2,0x5779,0xe33f,0xde67,
0xbfce,0x071a,0x9d42,0x87c2,
0x3fb2,0x4944,0xc9cd,0x3c51,
0x3ff0,0x0000,0x0000,0x0000
};
#define MAXGAM 171.624376956302725
static unsigned short LPI[4] = {
0x3ff2,0x50d0,0x48e7,0xa1bd,
};
#define LOGPI *(double *)LPI
#endif 

/* Stirling's formula for the gamma function */
#if UNK
static double STIR[5] = {
 7.87311395793093628397E-4,
-2.29549961613378126380E-4,
-2.68132617805781232825E-3,
 3.47222221605458667310E-3,
 8.33333333333482257126E-2,
};
#define MAXSTIR 143.01608
static double SQTPI = 2.50662827463100050242E0;
#endif
#if DEC
static unsigned short STIR[20] = {
0035516,0061622,0144553,0112224,
0135160,0131531,0037460,0165740,
0136057,0134460,0037242,0077270,
0036143,0107070,0156306,0027751,
0037252,0125252,0125252,0146064,
};
#define MAXSTIR 26.77
static unsigned short SQT[4] = {
0040440,0066230,0177661,0034055,
};
#define SQTPI *(double *)SQT
#endif
#if IBMPC
static unsigned short STIR[20] = {
0x7293,0x592d,0xcc72,0x3f49,
0x1d7c,0x27e6,0x166b,0xbf2e,
0x4fd7,0x07d4,0xf726,0xbf65,
0xc5fd,0x1b98,0x71c7,0x3f6c,
0x5986,0x5555,0x5555,0x3fb5,
};
#define MAXSTIR 143.01608
static unsigned short SQT[4] = {
0x2706,0x1ff6,0x0d93,0x4004,
};
#define SQTPI *(double *)SQT
#endif
#if MIEEE
static unsigned short STIR[20] = {
0x3f49,0xcc72,0x592d,0x7293,
0xbf2e,0x166b,0x27e6,0x1d7c,
0xbf65,0xf726,0x07d4,0x4fd7,
0x3f6c,0x71c7,0x1b98,0xc5fd,
0x3fb5,0x5555,0x5555,0x5986,
};
#define MAXSTIR 143.01608
static unsigned short SQT[4] = {
0x4004,0x0d93,0x1ff6,0x2706,
};
#define SQTPI *(double *)SQT
#endif

int sgngam = 0;
extern int sgngam;
extern double MAXLOG, MAXNUM, PI;
#ifdef ANSIPROT
extern double pow ( double, double );
extern double log ( double );
extern double exp ( double );
extern double sin ( double );
extern double polevl ( double, void *, int );
extern double p1evl ( double, void *, int );
extern double floor ( double );
extern double fabs ( double );
extern int isnan ( double );
extern int isfinite ( double );
static double stirf ( double );
double lgam ( double );
#else
double pow(), log(), exp(), sin(), polevl(), p1evl(), floor(), fabs();
int isnan(), isfinite();
static double stirf();
double lgam();
#endif
#ifdef INFINITIES
extern double INFINITY;
#endif
#ifdef NANS
extern double NAN;
#endif

/* Gamma function computed by Stirling's formula.
 * The polynomial STIR is valid for 33 <= x <= 172.
 */
static double stirf(x)
double x;
{
double y, w, v;

w = 1.0/x;
w = 1.0 + w * polevl( w, STIR, 4 );
y = exp(x);
if( x > MAXSTIR )
	{ /* Avoid overflow in pow() */
	v = pow( x, 0.5 * x - 0.25 );
	y = v * (v / y);
	}
else
	{
	y = pow( x, x - 0.5 ) / y;
	}
y = SQTPI * y * w;
return( y );
}



double gamma(x)
double x;
{
double p, q, z;
int i;

sgngam = 1;
#ifdef NANS
if( isnan(x) )
	return(x);
#endif
#ifdef INFINITIES
#ifdef NANS
if( x == INFINITY )
	return(x);
if( x == -INFINITY )
	return(NAN);
#else
if( !isfinite(x) )
	return(x);
#endif
#endif
q = fabs(x);

if( q > 33.0 )
	{
	if( x < 0.0 )
		{
		p = floor(q);
		if( p == q )
			{
#ifdef NANS
gamnan:
			mtherr( "gamma", DOMAIN );
			return (NAN);
#else
			goto goverf;
#endif
			}
		i = p;
		if( (i & 1) == 0 )
			sgngam = -1;
		z = q - p;
		if( z > 0.5 )
			{
			p += 1.0;
			z = q - p;
			}
		z = q * sin( PI * z );
		if( z == 0.0 )
			{
#ifdef INFINITIES
			return( sgngam * INFINITY);
#else
goverf:
			mtherr( "gamma", OVERFLOW );
			return( sgngam * MAXNUM);
#endif
			}
		z = fabs(z);
		z = PI/(z * stirf(q) );
		}
	else
		{
		z = stirf(x);
		}
	return( sgngam * z );
	}

z = 1.0;
while( x >= 3.0 )
	{
	x -= 1.0;
	z *= x;
	}

while( x < 0.0 )
	{
	if( x > -1.E-9 )
		goto small;
	z /= x;
	x += 1.0;
	}

while( x < 2.0 )
	{
	if( x < 1.e-9 )
		goto small;
	z /= x;
	x += 1.0;
	}

if( x == 2.0 )
	return(z);

x -= 2.0;
p = polevl( x, P, 6 );
q = polevl( x, Q, 7 );
return( z * p / q );

small:
if( x == 0.0 )
	{
#ifdef INFINITIES
#ifdef NANS
	  goto gamnan;
#else
	  return( INFINITY );
#endif
#else
	mtherr( "gamma", SING );
	return( MAXNUM );
#endif
	}
else
	return( z/((1.0 + 0.5772156649015329 * x) * x) );
}



/* A[]: Stirling's formula expansion of log gamma
 * B[], C[]: log gamma function between 2 and 3
 */
#ifdef UNK
static double A[] = {
 8.11614167470508450300E-4,
-5.95061904284301438324E-4,
 7.93650340457716943945E-4,
-2.77777777730099687205E-3,
 8.33333333333331927722E-2
};
static double B[] = {
-1.37825152569120859100E3,
-3.88016315134637840924E4,
-3.31612992738871184744E5,
-1.16237097492762307383E6,
-1.72173700820839662146E6,
-8.53555664245765465627E5
};
static double C[] = {
/* 1.00000000000000000000E0, */
-3.51815701436523470549E2,
-1.70642106651881159223E4,
-2.20528590553854454839E5,
-1.13933444367982507207E6,
-2.53252307177582951285E6,
-2.01889141433532773231E6
};
/* log( sqrt( 2*pi ) ) */
static double LS2PI  =  0.91893853320467274178;
#define MAXLGM 2.556348e305
#endif

#ifdef DEC
static unsigned short A[] = {
0035524,0141201,0034633,0031405,
0135433,0176755,0126007,0045030,
0035520,0006371,0003342,0172730,
0136066,0005540,0132605,0026407,
0037252,0125252,0125252,0125132
};
static unsigned short B[] = {
0142654,0044014,0077633,0035410,
0144027,0110641,0125335,0144760,
0144641,0165637,0142204,0047447,
0145215,0162027,0146246,0155211,
0145322,0026110,0010317,0110130,
0145120,0061472,0120300,0025363
};
static unsigned short C[] = {
/*0040200,0000000,0000000,0000000*/
0142257,0164150,0163630,0112622,
0143605,0050153,0156116,0135272,
0144527,0056045,0145642,0062332,
0145213,0012063,0106250,0001025,
0145432,0111254,0044577,0115142,
0145366,0071133,0050217,0005122
};
/* log( sqrt( 2*pi ) ) */
static unsigned short LS2P[] = {040153,037616,041445,0172645,};
#define LS2PI *(double *)LS2P
#define MAXLGM 2.035093e36
#endif

#ifdef IBMPC
static unsigned short A[] = {
0x6661,0x2733,0x9850,0x3f4a,
0xe943,0xb580,0x7fbd,0xbf43,
0x5ebb,0x20dc,0x019f,0x3f4a,
0xa5a1,0x16b0,0xc16c,0xbf66,
0x554b,0x5555,0x5555,0x3fb5
};
static unsigned short B[] = {
0x6761,0x8ff3,0x8901,0xc095,
0xb93e,0x355b,0xf234,0xc0e2,
0x89e5,0xf890,0x3d73,0xc114,
0xdb51,0xf994,0xbc82,0xc131,
0xf20b,0x0219,0x4589,0xc13a,
0x055e,0x5418,0x0c67,0xc12a
};
static unsigned short C[] = {
/*0x0000,0x0000,0x0000,0x3ff0,*/
0x12b2,0x1cf3,0xfd0d,0xc075,
0xd757,0x7b89,0xaa0d,0xc0d0,
0x4c9b,0xb974,0xeb84,0xc10a,
0x0043,0x7195,0x6286,0xc131,
0xf34c,0x892f,0x5255,0xc143,
0xe14a,0x6a11,0xce4b,0xc13e
};
/* log( sqrt( 2*pi ) ) */
static unsigned short LS2P[] = {
0xbeb5,0xc864,0x67f1,0x3fed
};
#define LS2PI *(double *)LS2P
#define MAXLGM 2.556348e305
#endif

#ifdef MIEEE
static unsigned short A[] = {
0x3f4a,0x9850,0x2733,0x6661,
0xbf43,0x7fbd,0xb580,0xe943,
0x3f4a,0x019f,0x20dc,0x5ebb,
0xbf66,0xc16c,0x16b0,0xa5a1,
0x3fb5,0x5555,0x5555,0x554b
};
static unsigned short B[] = {
0xc095,0x8901,0x8ff3,0x6761,
0xc0e2,0xf234,0x355b,0xb93e,
0xc114,0x3d73,0xf890,0x89e5,
0xc131,0xbc82,0xf994,0xdb51,
0xc13a,0x4589,0x0219,0xf20b,
0xc12a,0x0c67,0x5418,0x055e
};
static unsigned short C[] = {
0xc075,0xfd0d,0x1cf3,0x12b2,
0xc0d0,0xaa0d,0x7b89,0xd757,
0xc10a,0xeb84,0xb974,0x4c9b,
0xc131,0x6286,0x7195,0x0043,
0xc143,0x5255,0x892f,0xf34c,
0xc13e,0xce4b,0x6a11,0xe14a
};
/* log( sqrt( 2*pi ) ) */
static unsigned short LS2P[] = {
0x3fed,0x67f1,0xc864,0xbeb5
};
#define LS2PI *(double *)LS2P
#define MAXLGM 2.556348e305
#endif


/* Logarithm of gamma function */


double lgam(x)
double x;
{
double p, q, u, w, z;
int i;

sgngam = 1;
#ifdef NANS
if( isnan(x) )
	return(x);
#endif

#ifdef INFINITIES
if( !isfinite(x) )
	return(INFINITY);
#endif

if( x < -34.0 )
	{
	q = -x;
	w = lgam(q); /* note this modifies sgngam! */
	p = floor(q);
	if( p == q )
		{
lgsing:
#ifdef INFINITIES
		mtherr( "lgam", SING );
		return (INFINITY);
#else
		goto loverf;
#endif
		}
	i = p;
	if( (i & 1) == 0 )
		sgngam = -1;
	else
		sgngam = 1;
	z = q - p;
	if( z > 0.5 )
		{
		p += 1.0;
		z = p - q;
		}
	z = q * sin( PI * z );
	if( z == 0.0 )
		goto lgsing;
/*	z = log(PI) - log( z ) - w;*/
	z = LOGPI - log( z ) - w;
	return( z );
	}

if( x < 13.0 )
	{
	z = 1.0;
	p = 0.0;
	u = x;
	while( u >= 3.0 )
		{
		p -= 1.0;
		u = x + p;
		z *= u;
		}
	while( u < 2.0 )
		{
		if( u == 0.0 )
			goto lgsing;
		z /= u;
		p += 1.0;
		u = x + p;
		}
	if( z < 0.0 )
		{
		sgngam = -1;
		z = -z;
		}
	else
		sgngam = 1;
	if( u == 2.0 )
		return( log(z) );
	p -= 2.0;
	x = x + p;
	p = x * polevl( x, B, 5 ) / p1evl( x, C, 6);
	return( log(z) + p );
	}

if( x > MAXLGM )
	{
#ifdef INFINITIES
	return( sgngam * INFINITY );
#else
loverf:
	mtherr( "lgam", OVERFLOW );
	return( sgngam * MAXNUM );
#endif
	}

q = ( x - 0.5 ) * log(x) - x + LS2PI;
if( x > 1.0e8 )
	return( q );

p = 1.0/(x*x);
if( x >= 1000.0 )
	q += ((   7.9365079365079365079365e-4 * p
		- 2.7777777777777777777778e-3) *p
		+ 0.0833333333333333333333) / x;
else
	q += polevl( p, A, 4 ) / x;
return( q );
}