1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
|
/* ceil()
* floor()
* frexp()
* ldexp()
* signbit()
* isnan()
* isfinite()
*
* Floating point numeric utilities
*
*
*
* SYNOPSIS:
*
* double ceil(), floor(), frexp(), ldexp();
* int signbit(), isnan(), isfinite();
* double x, y;
* int expnt, n;
*
* y = floor(x);
* y = ceil(x);
* y = frexp( x, &expnt );
* y = ldexp( x, n );
* n = signbit(x);
* n = isnan(x);
* n = isfinite(x);
*
*
*
* DESCRIPTION:
*
* All four routines return a double precision floating point
* result.
*
* floor() returns the largest integer less than or equal to x.
* It truncates toward minus infinity.
*
* ceil() returns the smallest integer greater than or equal
* to x. It truncates toward plus infinity.
*
* frexp() extracts the exponent from x. It returns an integer
* power of two to expnt and the significand between 0.5 and 1
* to y. Thus x = y * 2**expn.
*
* ldexp() multiplies x by 2**n.
*
* signbit(x) returns 1 if the sign bit of x is 1, else 0.
*
* These functions are part of the standard C run time library
* for many but not all C compilers. The ones supplied are
* written in C for either DEC or IEEE arithmetic. They should
* be used only if your compiler library does not already have
* them.
*
* The IEEE versions assume that denormal numbers are implemented
* in the arithmetic. Some modifications will be required if
* the arithmetic has abrupt rather than gradual underflow.
*/
/*
Cephes Math Library Release 2.8: June, 2000
Copyright 1984, 1995, 2000 by Stephen L. Moshier
*/
#include <math.h>
#ifdef UNK
/* ceil(), floor(), frexp(), ldexp() may need to be rewritten. */
#undef UNK
#if BIGENDIAN
#define MIEEE 1
#else
#define IBMPC 1
#endif
#endif
#ifdef DEC
#define EXPMSK 0x807f
#define MEXP 255
#define NBITS 56
#endif
#ifdef IBMPC
#define EXPMSK 0x800f
#define MEXP 0x7ff
#define NBITS 53
#endif
#ifdef MIEEE
#define EXPMSK 0x800f
#define MEXP 0x7ff
#define NBITS 53
#endif
extern double MAXNUM, NEGZERO;
#ifdef ANSIPROT
double floor ( double );
int isnan ( double );
int isfinite ( double );
double ldexp ( double, int );
#else
double floor();
int isnan(), isfinite();
double ldexp();
#endif
double ceil(x)
double x;
{
double y;
#ifdef UNK
mtherr( "ceil", DOMAIN );
return(0.0);
#endif
#ifdef NANS
if( isnan(x) )
return( x );
#endif
#ifdef INFINITIES
if(!isfinite(x))
return(x);
#endif
y = floor(x);
if( y < x )
y += 1.0;
#ifdef MINUSZERO
if( y == 0.0 && x < 0.0 )
return( NEGZERO );
#endif
return(y);
}
/* Bit clearing masks: */
static unsigned short bmask[] = {
0xffff,
0xfffe,
0xfffc,
0xfff8,
0xfff0,
0xffe0,
0xffc0,
0xff80,
0xff00,
0xfe00,
0xfc00,
0xf800,
0xf000,
0xe000,
0xc000,
0x8000,
0x0000,
};
double floor(x)
double x;
{
union
{
double y;
unsigned short sh[4];
} u;
unsigned short *p;
int e;
#ifdef UNK
mtherr( "floor", DOMAIN );
return(0.0);
#endif
#ifdef NANS
if( isnan(x) )
return( x );
#endif
#ifdef INFINITIES
if(!isfinite(x))
return(x);
#endif
#ifdef MINUSZERO
if(x == 0.0L)
return(x);
#endif
u.y = x;
/* find the exponent (power of 2) */
#ifdef DEC
p = (unsigned short *)&u.sh[0];
e = (( *p >> 7) & 0377) - 0201;
p += 3;
#endif
#ifdef IBMPC
p = (unsigned short *)&u.sh[3];
e = (( *p >> 4) & 0x7ff) - 0x3ff;
p -= 3;
#endif
#ifdef MIEEE
p = (unsigned short *)&u.sh[0];
e = (( *p >> 4) & 0x7ff) - 0x3ff;
p += 3;
#endif
if( e < 0 )
{
if( u.y < 0.0 )
return( -1.0 );
else
return( 0.0 );
}
e = (NBITS -1) - e;
/* clean out 16 bits at a time */
while( e >= 16 )
{
#ifdef IBMPC
*p++ = 0;
#endif
#ifdef DEC
*p-- = 0;
#endif
#ifdef MIEEE
*p-- = 0;
#endif
e -= 16;
}
/* clear the remaining bits */
if( e > 0 )
*p &= bmask[e];
if( (x < 0) && (u.y != x) )
u.y -= 1.0;
return(u.y);
}
double frexp( x, pw2 )
double x;
int *pw2;
{
union
{
double y;
unsigned short sh[4];
} u;
int i;
#ifdef DENORMAL
int k;
#endif
short *q;
u.y = x;
#ifdef UNK
mtherr( "frexp", DOMAIN );
return(0.0);
#endif
#ifdef IBMPC
q = (short *)&u.sh[3];
#endif
#ifdef DEC
q = (short *)&u.sh[0];
#endif
#ifdef MIEEE
q = (short *)&u.sh[0];
#endif
/* find the exponent (power of 2) */
#ifdef DEC
i = ( *q >> 7) & 0377;
if( i == 0 )
{
*pw2 = 0;
return(0.0);
}
i -= 0200;
*pw2 = i;
*q &= 0x807f; /* strip all exponent bits */
*q |= 040000; /* mantissa between 0.5 and 1 */
return(u.y);
#endif
#ifdef IBMPC
i = ( *q >> 4) & 0x7ff;
if( i != 0 )
goto ieeedon;
#endif
#ifdef MIEEE
i = *q >> 4;
i &= 0x7ff;
if( i != 0 )
goto ieeedon;
#ifdef DENORMAL
#else
*pw2 = 0;
return(0.0);
#endif
#endif
#ifndef DEC
/* Number is denormal or zero */
#ifdef DENORMAL
if( u.y == 0.0 )
{
*pw2 = 0;
return( 0.0 );
}
/* Handle denormal number. */
do
{
u.y *= 2.0;
i -= 1;
k = ( *q >> 4) & 0x7ff;
}
while( k == 0 );
i = i + k;
#endif /* DENORMAL */
ieeedon:
i -= 0x3fe;
*pw2 = i;
*q &= 0x800f;
*q |= 0x3fe0;
return( u.y );
#endif
}
double ldexp( x, pw2 )
double x;
int pw2;
{
union
{
double y;
unsigned short sh[4];
} u;
short *q;
int e;
#ifdef UNK
mtherr( "ldexp", DOMAIN );
return(0.0);
#endif
u.y = x;
#ifdef DEC
q = (short *)&u.sh[0];
e = ( *q >> 7) & 0377;
if( e == 0 )
return(0.0);
#else
#ifdef IBMPC
q = (short *)&u.sh[3];
#endif
#ifdef MIEEE
q = (short *)&u.sh[0];
#endif
while( (e = (*q & 0x7ff0) >> 4) == 0 )
{
if( u.y == 0.0 )
{
return( 0.0 );
}
/* Input is denormal. */
if( pw2 > 0 )
{
u.y *= 2.0;
pw2 -= 1;
}
if( pw2 < 0 )
{
if( pw2 < -53 )
return(0.0);
u.y /= 2.0;
pw2 += 1;
}
if( pw2 == 0 )
return(u.y);
}
#endif /* not DEC */
e += pw2;
/* Handle overflow */
#ifdef DEC
if( e > MEXP )
return( MAXNUM );
#else
if( e >= MEXP )
return( 2.0*MAXNUM );
#endif
/* Handle denormalized results */
if( e < 1 )
{
#ifdef DENORMAL
if( e < -53 )
return(0.0);
*q &= 0x800f;
*q |= 0x10;
/* For denormals, significant bits may be lost even
when dividing by 2. Construct 2^-(1-e) so the result
is obtained with only one multiplication. */
u.y *= ldexp(1.0, e-1);
return(u.y);
#else
return(0.0);
#endif
}
else
{
#ifdef DEC
*q &= 0x807f; /* strip all exponent bits */
*q |= (e & 0xff) << 7;
#else
*q &= 0x800f;
*q |= (e & 0x7ff) << 4;
#endif
return(u.y);
}
}
|