1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
|
/* exp10.c
*
* Base 10 exponential function
* (Common antilogarithm)
*
*
*
* SYNOPSIS:
*
* double x, y, exp10();
*
* y = exp10( x );
*
*
*
* DESCRIPTION:
*
* Returns 10 raised to the x power.
*
* Range reduction is accomplished by expressing the argument
* as 10**x = 2**n 10**f, with |f| < 0.5 log10(2).
* The Pade' form
*
* 1 + 2x P(x**2)/( Q(x**2) - P(x**2) )
*
* is used to approximate 10**f.
*
*
*
* ACCURACY:
*
* Relative error:
* arithmetic domain # trials peak rms
* IEEE -307,+307 30000 2.2e-16 5.5e-17
* Test result from an earlier version (2.1):
* DEC -38,+38 70000 3.1e-17 7.0e-18
*
* ERROR MESSAGES:
*
* message condition value returned
* exp10 underflow x < -MAXL10 0.0
* exp10 overflow x > MAXL10 MAXNUM
*
* DEC arithmetic: MAXL10 = 38.230809449325611792.
* IEEE arithmetic: MAXL10 = 308.2547155599167.
*
*/
/*
Cephes Math Library Release 2.8: June, 2000
Copyright 1984, 1991, 2000 by Stephen L. Moshier
*/
#include <math.h>
#ifdef UNK
static double P[] = {
4.09962519798587023075E-2,
1.17452732554344059015E1,
4.06717289936872725516E2,
2.39423741207388267439E3,
};
static double Q[] = {
/* 1.00000000000000000000E0,*/
8.50936160849306532625E1,
1.27209271178345121210E3,
2.07960819286001865907E3,
};
/* static double LOG102 = 3.01029995663981195214e-1; */
static double LOG210 = 3.32192809488736234787e0;
static double LG102A = 3.01025390625000000000E-1;
static double LG102B = 4.60503898119521373889E-6;
/* static double MAXL10 = 38.230809449325611792; */
static double MAXL10 = 308.2547155599167;
#endif
#ifdef DEC
static unsigned short P[] = {
0037047,0165657,0114061,0067234,
0041073,0166243,0123052,0144643,
0042313,0055720,0024032,0047443,
0043025,0121714,0070232,0050007,
};
static unsigned short Q[] = {
/*0040200,0000000,0000000,0000000,*/
0041652,0027756,0071216,0050075,
0042637,0001367,0077263,0136017,
0043001,0174673,0024157,0133416,
};
/*
static unsigned short L102[] = {0037632,0020232,0102373,0147770};
#define LOG102 *(double *)L102
*/
static unsigned short L210[] = {0040524,0115170,0045715,0015613};
#define LOG210 *(double *)L210
static unsigned short L102A[] = {0037632,0020000,0000000,0000000,};
#define LG102A *(double *)L102A
static unsigned short L102B[] = {0033632,0102373,0147767,0114220,};
#define LG102B *(double *)L102B
static unsigned short MXL[] = {0041430,0166131,0047761,0154130,};
#define MAXL10 ( *(double *)MXL )
#endif
#ifdef IBMPC
static unsigned short P[] = {
0x2dd4,0xf306,0xfd75,0x3fa4,
0x5934,0x74c5,0x7d94,0x4027,
0x49e4,0x0503,0x6b7a,0x4079,
0x4a01,0x8e13,0xb479,0x40a2,
};
static unsigned short Q[] = {
/*0x0000,0x0000,0x0000,0x3ff0,*/
0xca08,0xce51,0x45fd,0x4055,
0x7782,0xefd6,0xe05e,0x4093,
0xf6e2,0x650d,0x3f37,0x40a0,
};
/*
static unsigned short L102[] = {0x79ff,0x509f,0x4413,0x3fd3};
#define LOG102 *(double *)L102
*/
static unsigned short L210[] = {0xa371,0x0979,0x934f,0x400a};
#define LOG210 *(double *)L210
static unsigned short L102A[] = {0x0000,0x0000,0x4400,0x3fd3,};
#define LG102A *(double *)L102A
static unsigned short L102B[] = {0xf312,0x79fe,0x509f,0x3ed3,};
#define LG102B *(double *)L102B
static double MAXL10 = 308.2547155599167;
#endif
#ifdef MIEEE
static unsigned short P[] = {
0x3fa4,0xfd75,0xf306,0x2dd4,
0x4027,0x7d94,0x74c5,0x5934,
0x4079,0x6b7a,0x0503,0x49e4,
0x40a2,0xb479,0x8e13,0x4a01,
};
static unsigned short Q[] = {
/*0x3ff0,0x0000,0x0000,0x0000,*/
0x4055,0x45fd,0xce51,0xca08,
0x4093,0xe05e,0xefd6,0x7782,
0x40a0,0x3f37,0x650d,0xf6e2,
};
/*
static unsigned short L102[] = {0x3fd3,0x4413,0x509f,0x79ff};
#define LOG102 *(double *)L102
*/
static unsigned short L210[] = {0x400a,0x934f,0x0979,0xa371};
#define LOG210 *(double *)L210
static unsigned short L102A[] = {0x3fd3,0x4400,0x0000,0x0000,};
#define LG102A *(double *)L102A
static unsigned short L102B[] = {0x3ed3,0x509f,0x79fe,0xf312,};
#define LG102B *(double *)L102B
static double MAXL10 = 308.2547155599167;
#endif
#ifdef ANSIPROT
extern double floor ( double );
extern double ldexp ( double, int );
extern double polevl ( double, void *, int );
extern double p1evl ( double, void *, int );
extern int isnan ( double );
extern int isfinite ( double );
#else
double floor(), ldexp(), polevl(), p1evl();
int isnan(), isfinite();
#endif
extern double MAXNUM;
#ifdef INFINITIES
extern double INFINITY;
#endif
double exp10(x)
double x;
{
double px, xx;
short n;
#ifdef NANS
if( isnan(x) )
return(x);
#endif
if( x > MAXL10 )
{
#ifdef INFINITIES
return( INFINITY );
#else
mtherr( "exp10", OVERFLOW );
return( MAXNUM );
#endif
}
if( x < -MAXL10 ) /* Would like to use MINLOG but can't */
{
#ifndef INFINITIES
mtherr( "exp10", UNDERFLOW );
#endif
return(0.0);
}
/* Express 10**x = 10**g 2**n
* = 10**g 10**( n log10(2) )
* = 10**( g + n log10(2) )
*/
px = floor( LOG210 * x + 0.5 );
n = px;
x -= px * LG102A;
x -= px * LG102B;
/* rational approximation for exponential
* of the fractional part:
* 10**x = 1 + 2x P(x**2)/( Q(x**2) - P(x**2) )
*/
xx = x * x;
px = x * polevl( xx, P, 3 );
x = px/( p1evl( xx, Q, 3 ) - px );
x = 1.0 + ldexp( x, 1 );
/* multiply by power of 2 */
x = ldexp( x, n );
return(x);
}
|