1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
|
/* ellpk.c
*
* Complete elliptic integral of the first kind
*
*
*
* SYNOPSIS:
*
* double m1, y, ellpk();
*
* y = ellpk( m1 );
*
*
*
* DESCRIPTION:
*
* Approximates the integral
*
*
*
* pi/2
* -
* | |
* | dt
* K(m) = | ------------------
* | 2
* | | sqrt( 1 - m sin t )
* -
* 0
*
* where m = 1 - m1, using the approximation
*
* P(x) - log x Q(x).
*
* The argument m1 is used rather than m so that the logarithmic
* singularity at m = 1 will be shifted to the origin; this
* preserves maximum accuracy.
*
* K(0) = pi/2.
*
* ACCURACY:
*
* Relative error:
* arithmetic domain # trials peak rms
* DEC 0,1 16000 3.5e-17 1.1e-17
* IEEE 0,1 30000 2.5e-16 6.8e-17
*
* ERROR MESSAGES:
*
* message condition value returned
* ellpk domain x<0, x>1 0.0
*
*/
/* ellpk.c */
/*
Cephes Math Library, Release 2.8: June, 2000
Copyright 1984, 1987, 2000 by Stephen L. Moshier
*/
#include <math.h>
#ifdef DEC
static unsigned short P[] =
{
0035020,0127576,0040430,0051544,
0036025,0070136,0042703,0153716,
0036402,0122614,0062555,0077777,
0036441,0102130,0072334,0025172,
0036341,0043320,0117242,0172076,
0036312,0146456,0077242,0154141,
0036420,0003467,0013727,0035407,
0036564,0137263,0110651,0020237,
0036775,0001330,0144056,0020305,
0037305,0144137,0157521,0141734,
0040261,0071027,0173721,0147572
};
static unsigned short Q[] =
{
0034366,0130371,0103453,0077633,
0035557,0122745,0173515,0113016,
0036302,0124470,0167304,0074473,
0036575,0132403,0117226,0117576,
0036703,0156271,0047124,0147733,
0036766,0137465,0002053,0157312,
0037031,0014423,0154274,0176515,
0037107,0177747,0143216,0016145,
0037217,0177777,0172621,0074000,
0037377,0177777,0177776,0156435,
0040000,0000000,0000000,0000000
};
static unsigned short ac1[] = {0040261,0071027,0173721,0147572};
#define C1 (*(double *)ac1)
#endif
#ifdef IBMPC
static unsigned short P[] =
{
0x0a6d,0xc823,0x15ef,0x3f22,
0x7afa,0xc8b8,0xae0b,0x3f62,
0xb000,0x8cad,0x54b1,0x3f80,
0x854f,0x0e9b,0x308b,0x3f84,
0x5e88,0x13d4,0x28da,0x3f7c,
0x5b0c,0xcfd4,0x59a5,0x3f79,
0xe761,0xe2fa,0x00e6,0x3f82,
0x2414,0x7235,0x97d6,0x3f8e,
0xc419,0x1905,0xa05b,0x3f9f,
0x387c,0xfbea,0xb90b,0x3fb8,
0x39ef,0xfefa,0x2e42,0x3ff6
};
static unsigned short Q[] =
{
0x6ff3,0x30e5,0xd61f,0x3efe,
0xb2c2,0xbee9,0xf4bc,0x3f4d,
0x8f27,0x1dd8,0x5527,0x3f78,
0xd3f0,0x73d2,0xb6a0,0x3f8f,
0x99fb,0x29ca,0x7b97,0x3f98,
0x7bd9,0xa085,0xd7e6,0x3f9e,
0x9faa,0x7b17,0x2322,0x3fa3,
0xc38d,0xf8d1,0xfffc,0x3fa8,
0x2f00,0xfeb2,0xffff,0x3fb1,
0xdba4,0xffff,0xffff,0x3fbf,
0x0000,0x0000,0x0000,0x3fe0
};
static unsigned short ac1[] = {0x39ef,0xfefa,0x2e42,0x3ff6};
#define C1 (*(double *)ac1)
#endif
#ifdef MIEEE
static unsigned short P[] =
{
0x3f22,0x15ef,0xc823,0x0a6d,
0x3f62,0xae0b,0xc8b8,0x7afa,
0x3f80,0x54b1,0x8cad,0xb000,
0x3f84,0x308b,0x0e9b,0x854f,
0x3f7c,0x28da,0x13d4,0x5e88,
0x3f79,0x59a5,0xcfd4,0x5b0c,
0x3f82,0x00e6,0xe2fa,0xe761,
0x3f8e,0x97d6,0x7235,0x2414,
0x3f9f,0xa05b,0x1905,0xc419,
0x3fb8,0xb90b,0xfbea,0x387c,
0x3ff6,0x2e42,0xfefa,0x39ef
};
static unsigned short Q[] =
{
0x3efe,0xd61f,0x30e5,0x6ff3,
0x3f4d,0xf4bc,0xbee9,0xb2c2,
0x3f78,0x5527,0x1dd8,0x8f27,
0x3f8f,0xb6a0,0x73d2,0xd3f0,
0x3f98,0x7b97,0x29ca,0x99fb,
0x3f9e,0xd7e6,0xa085,0x7bd9,
0x3fa3,0x2322,0x7b17,0x9faa,
0x3fa8,0xfffc,0xf8d1,0xc38d,
0x3fb1,0xffff,0xfeb2,0x2f00,
0x3fbf,0xffff,0xffff,0xdba4,
0x3fe0,0x0000,0x0000,0x0000
};
static unsigned short ac1[] = {
0x3ff6,0x2e42,0xfefa,0x39ef
};
#define C1 (*(double *)ac1)
#endif
#ifdef UNK
static double P[] =
{
1.37982864606273237150E-4,
2.28025724005875567385E-3,
7.97404013220415179367E-3,
9.85821379021226008714E-3,
6.87489687449949877925E-3,
6.18901033637687613229E-3,
8.79078273952743772254E-3,
1.49380448916805252718E-2,
3.08851465246711995998E-2,
9.65735902811690126535E-2,
1.38629436111989062502E0
};
static double Q[] =
{
2.94078955048598507511E-5,
9.14184723865917226571E-4,
5.94058303753167793257E-3,
1.54850516649762399335E-2,
2.39089602715924892727E-2,
3.01204715227604046988E-2,
3.73774314173823228969E-2,
4.88280347570998239232E-2,
7.03124996963957469739E-2,
1.24999999999870820058E-1,
4.99999999999999999821E-1
};
static double C1 = 1.3862943611198906188E0; /* log(4) */
#endif
#ifdef ANSIPROT
extern double polevl ( double, void *, int );
extern double p1evl ( double, void *, int );
extern double log ( double );
#else
double polevl(), p1evl(), log();
#endif
extern double MACHEP, MAXNUM;
double ellpk(x)
double x;
{
if( (x < 0.0) || (x > 1.0) )
{
mtherr( "ellpk", DOMAIN );
return( 0.0 );
}
if( x > MACHEP )
{
return( polevl(x,P,10) - log(x) * polevl(x,Q,10) );
}
else
{
if( x == 0.0 )
{
mtherr( "ellpk", SING );
return( MAXNUM );
}
else
{
return( C1 - 0.5 * log(x) );
}
}
}
|