1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
|
/* ellie.c
*
* Incomplete elliptic integral of the second kind
*
*
*
* SYNOPSIS:
*
* double phi, m, y, ellie();
*
* y = ellie( phi, m );
*
*
*
* DESCRIPTION:
*
* Approximates the integral
*
*
* phi
* -
* | |
* | 2
* E(phi_\m) = | sqrt( 1 - m sin t ) dt
* |
* | |
* -
* 0
*
* of amplitude phi and modulus m, using the arithmetic -
* geometric mean algorithm.
*
*
*
* ACCURACY:
*
* Tested at random arguments with phi in [-10, 10] and m in
* [0, 1].
* Relative error:
* arithmetic domain # trials peak rms
* DEC 0,2 2000 1.9e-16 3.4e-17
* IEEE -10,10 150000 3.3e-15 1.4e-16
*
*
*/
/*
Cephes Math Library Release 2.8: June, 2000
Copyright 1984, 1987, 1993, 2000 by Stephen L. Moshier
*/
/* Incomplete elliptic integral of second kind */
#include <math.h>
extern double PI, PIO2, MACHEP;
#ifdef ANSIPROT
extern double sqrt ( double );
extern double fabs ( double );
extern double log ( double );
extern double sin ( double x );
extern double tan ( double x );
extern double atan ( double );
extern double floor ( double );
extern double ellpe ( double );
extern double ellpk ( double );
double ellie ( double, double );
#else
double sqrt(), fabs(), log(), sin(), tan(), atan(), floor();
double ellpe(), ellpk(), ellie();
#endif
double ellie( phi, m )
double phi, m;
{
double a, b, c, e, temp;
double lphi, t, E;
int d, mod, npio2, sign;
if( m == 0.0 )
return( phi );
lphi = phi;
npio2 = floor( lphi/PIO2 );
if( npio2 & 1 )
npio2 += 1;
lphi = lphi - npio2 * PIO2;
if( lphi < 0.0 )
{
lphi = -lphi;
sign = -1;
}
else
{
sign = 1;
}
a = 1.0 - m;
E = ellpe( a );
if( a == 0.0 )
{
temp = sin( lphi );
goto done;
}
t = tan( lphi );
b = sqrt(a);
/* Thanks to Brian Fitzgerald <fitzgb@mml0.meche.rpi.edu>
for pointing out an instability near odd multiples of pi/2. */
if( fabs(t) > 10.0 )
{
/* Transform the amplitude */
e = 1.0/(b*t);
/* ... but avoid multiple recursions. */
if( fabs(e) < 10.0 )
{
e = atan(e);
temp = E + m * sin( lphi ) * sin( e ) - ellie( e, m );
goto done;
}
}
c = sqrt(m);
a = 1.0;
d = 1;
e = 0.0;
mod = 0;
while( fabs(c/a) > MACHEP )
{
temp = b/a;
lphi = lphi + atan(t*temp) + mod * PI;
mod = (lphi + PIO2)/PI;
t = t * ( 1.0 + temp )/( 1.0 - temp * t * t );
c = ( a - b )/2.0;
temp = sqrt( a * b );
a = ( a + b )/2.0;
b = temp;
d += d;
e += c * sin(lphi);
}
temp = E / ellpk( 1.0 - m );
temp *= (atan(t) + mod * PI)/(d * a);
temp += e;
done:
if( sign < 0 )
temp = -temp;
temp += npio2 * E;
return( temp );
}
|