1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
|
/*
* Copyright (c) 1983 Regents of the University of California.
* All rights reserved.
*
* Redistribution and use in source and binary forms are permitted
* provided that the above copyright notice and this paragraph are
* duplicated in all such forms and that any documentation,
* advertising materials, and other materials related to such
* distribution and use acknowledge that the software was developed
* by the University of California, Berkeley. The name of the
* University may not be used to endorse or promote products derived
* from this software without specific prior written permission.
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
* WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*/
/*
* This is derived from the Berkeley source:
* @(#)random.c 5.5 (Berkeley) 7/6/88
* It was reworked for the GNU C Library by Roland McGrath.
* Rewritten to be reentrant by Ulrich Drepper, 1995
*/
#define _GNU_SOURCE
#include <features.h>
#include <errno.h>
#include <limits.h>
#include <stddef.h>
#include <stdlib.h>
/* An improved random number generation package. In addition to the standard
rand()/srand() like interface, this package also has a special state info
interface. The initstate() routine is called with a seed, an array of
bytes, and a count of how many bytes are being passed in; this array is
then initialized to contain information for random number generation with
that much state information. Good sizes for the amount of state
information are 32, 64, 128, and 256 bytes. The state can be switched by
calling the setstate() function with the same array as was initialized
with initstate(). By default, the package runs with 128 bytes of state
information and generates far better random numbers than a linear
congruential generator. If the amount of state information is less than
32 bytes, a simple linear congruential R.N.G. is used. Internally, the
state information is treated as an array of longs; the zeroth element of
the array is the type of R.N.G. being used (small integer); the remainder
of the array is the state information for the R.N.G. Thus, 32 bytes of
state information will give 7 longs worth of state information, which will
allow a degree seven polynomial. (Note: The zeroth word of state
information also has some other information stored in it; see setstate
for details). The random number generation technique is a linear feedback
shift register approach, employing trinomials (since there are fewer terms
to sum up that way). In this approach, the least significant bit of all
the numbers in the state table will act as a linear feedback shift register,
and will have period 2^deg - 1 (where deg is the degree of the polynomial
being used, assuming that the polynomial is irreducible and primitive).
The higher order bits will have longer periods, since their values are
also influenced by pseudo-random carries out of the lower bits. The
total period of the generator is approximately deg*(2**deg - 1); thus
doubling the amount of state information has a vast influence on the
period of the generator. Note: The deg*(2**deg - 1) is an approximation
only good for large deg, when the period of the shift register is the
dominant factor. With deg equal to seven, the period is actually much
longer than the 7*(2**7 - 1) predicted by this formula. */
/* For each of the currently supported random number generators, we have a
break value on the amount of state information (you need at least this many
bytes of state info to support this random number generator), a degree for
the polynomial (actually a trinomial) that the R.N.G. is based on, and
separation between the two lower order coefficients of the trinomial. */
/* Linear congruential. */
#define TYPE_0 0
#define BREAK_0 8
#define DEG_0 0
#define SEP_0 0
/* x**7 + x**3 + 1. */
#define TYPE_1 1
#define BREAK_1 32
#define DEG_1 7
#define SEP_1 3
/* x**15 + x + 1. */
#define TYPE_2 2
#define BREAK_2 64
#define DEG_2 15
#define SEP_2 1
/* x**31 + x**3 + 1. */
#define TYPE_3 3
#define BREAK_3 128
#define DEG_3 31
#define SEP_3 3
/* x**63 + x + 1. */
#define TYPE_4 4
#define BREAK_4 256
#define DEG_4 63
#define SEP_4 1
/* Array versions of the above information to make code run faster.
Relies on fact that TYPE_i == i. */
#define MAX_TYPES 5 /* Max number of types above. */
struct random_poly_info
{
int seps[MAX_TYPES];
int degrees[MAX_TYPES];
};
static const struct random_poly_info random_poly_info =
{
{ SEP_0, SEP_1, SEP_2, SEP_3, SEP_4 },
{ DEG_0, DEG_1, DEG_2, DEG_3, DEG_4 }
};
/* If we are using the trivial TYPE_0 R.N.G., just do the old linear
congruential bit. Otherwise, we do our fancy trinomial stuff, which is the
same in all the other cases due to all the global variables that have been
set up. The basic operation is to add the number at the rear pointer into
the one at the front pointer. Then both pointers are advanced to the next
location cyclically in the table. The value returned is the sum generated,
reduced to 31 bits by throwing away the "least random" low bit.
Note: The code takes advantage of the fact that both the front and
rear pointers can't wrap on the same call by not testing the rear
pointer if the front one has wrapped. Returns a 31-bit random number. */
int attribute_hidden __random_r(struct random_data *buf, int32_t *result)
{
int32_t *state;
if (buf == NULL || result == NULL)
goto fail;
state = buf->state;
if (buf->rand_type == TYPE_0)
{
int32_t val = state[0];
val = ((state[0] * 1103515245) + 12345) & 0x7fffffff;
state[0] = val;
*result = val;
}
else
{
int32_t *fptr = buf->fptr;
int32_t *rptr = buf->rptr;
int32_t *end_ptr = buf->end_ptr;
int32_t val;
val = *fptr += *rptr;
/* Chucking least random bit. */
*result = (val >> 1) & 0x7fffffff;
++fptr;
if (fptr >= end_ptr)
{
fptr = state;
++rptr;
}
else
{
++rptr;
if (rptr >= end_ptr)
rptr = state;
}
buf->fptr = fptr;
buf->rptr = rptr;
}
return 0;
fail:
__set_errno (EINVAL);
return -1;
}
strong_alias(__random_r,random_r)
/* Initialize the random number generator based on the given seed. If the
type is the trivial no-state-information type, just remember the seed.
Otherwise, initializes state[] based on the given "seed" via a linear
congruential generator. Then, the pointers are set to known locations
that are exactly rand_sep places apart. Lastly, it cycles the state
information a given number of times to get rid of any initial dependencies
introduced by the L.C.R.N.G. Note that the initialization of randtbl[]
for default usage relies on values produced by this routine. */
int attribute_hidden __srandom_r (unsigned int seed, struct random_data *buf)
{
int type;
int32_t *state;
long int i;
long int word;
int32_t *dst;
int kc;
if (buf == NULL)
goto fail;
type = buf->rand_type;
if ((unsigned int) type >= MAX_TYPES)
goto fail;
state = buf->state;
/* We must make sure the seed is not 0. Take arbitrarily 1 in this case. */
if (seed == 0)
seed = 1;
state[0] = seed;
if (type == TYPE_0)
goto done;
dst = state;
word = seed;
kc = buf->rand_deg;
for (i = 1; i < kc; ++i)
{
/* This does:
state[i] = (16807 * state[i - 1]) % 2147483647;
but avoids overflowing 31 bits. */
long int hi = word / 127773;
long int lo = word % 127773;
word = 16807 * lo - 2836 * hi;
if (word < 0)
word += 2147483647;
*++dst = word;
}
buf->fptr = &state[buf->rand_sep];
buf->rptr = &state[0];
kc *= 10;
while (--kc >= 0)
{
int32_t discard;
(void) __random_r (buf, &discard);
}
done:
return 0;
fail:
return -1;
}
strong_alias(__srandom_r,srandom_r)
/* Initialize the state information in the given array of N bytes for
future random number generation. Based on the number of bytes we
are given, and the break values for the different R.N.G.'s, we choose
the best (largest) one we can and set things up for it. srandom is
then called to initialize the state information. Note that on return
from srandom, we set state[-1] to be the type multiplexed with the current
value of the rear pointer; this is so successive calls to initstate won't
lose this information and will be able to restart with setstate.
Note: The first thing we do is save the current state, if any, just like
setstate so that it doesn't matter when initstate is called.
Returns a pointer to the old state. */
int attribute_hidden __initstate_r (unsigned int seed, char *arg_state, size_t n, struct random_data *buf)
{
int type;
int degree;
int separation;
int32_t *state;
if (buf == NULL)
goto fail;
if (n >= BREAK_3)
type = n < BREAK_4 ? TYPE_3 : TYPE_4;
else if (n < BREAK_1)
{
if (n < BREAK_0)
{
__set_errno (EINVAL);
goto fail;
}
type = TYPE_0;
}
else
type = n < BREAK_2 ? TYPE_1 : TYPE_2;
degree = random_poly_info.degrees[type];
separation = random_poly_info.seps[type];
buf->rand_type = type;
buf->rand_sep = separation;
buf->rand_deg = degree;
state = &((int32_t *) arg_state)[1]; /* First location. */
/* Must set END_PTR before srandom. */
buf->end_ptr = &state[degree];
buf->state = state;
__srandom_r (seed, buf);
state[-1] = TYPE_0;
if (type != TYPE_0)
state[-1] = (buf->rptr - state) * MAX_TYPES + type;
return 0;
fail:
__set_errno (EINVAL);
return -1;
}
strong_alias(__initstate_r,initstate_r)
/* Restore the state from the given state array.
Note: It is important that we also remember the locations of the pointers
in the current state information, and restore the locations of the pointers
from the old state information. This is done by multiplexing the pointer
location into the zeroth word of the state information. Note that due
to the order in which things are done, it is OK to call setstate with the
same state as the current state
Returns a pointer to the old state information. */
int attribute_hidden __setstate_r (char *arg_state, struct random_data *buf)
{
int32_t *new_state = 1 + (int32_t *) arg_state;
int type;
int old_type;
int32_t *old_state;
int degree;
int separation;
if (arg_state == NULL || buf == NULL)
goto fail;
old_type = buf->rand_type;
old_state = buf->state;
if (old_type == TYPE_0)
old_state[-1] = TYPE_0;
else
old_state[-1] = (MAX_TYPES * (buf->rptr - old_state)) + old_type;
type = new_state[-1] % MAX_TYPES;
if (type < TYPE_0 || type > TYPE_4)
goto fail;
buf->rand_deg = degree = random_poly_info.degrees[type];
buf->rand_sep = separation = random_poly_info.seps[type];
buf->rand_type = type;
if (type != TYPE_0)
{
int rear = new_state[-1] / MAX_TYPES;
buf->rptr = &new_state[rear];
buf->fptr = &new_state[(rear + separation) % degree];
}
buf->state = new_state;
/* Set end_ptr too. */
buf->end_ptr = &new_state[degree];
return 0;
fail:
__set_errno (EINVAL);
return -1;
}
strong_alias(__setstate_r,setstate_r)
|