1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
|
/*
* The hashcode handling code below is heavily inspired in libiberty's
* hashtab code, but with most adaptation points and support for
* deleting elements removed.
*
* Copyright (C) 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
* Contributed by Vladimir Makarov (vmakarov@cygnus.com).
*/
#ifndef INLINE_HASHTAB_H
# define INLINE_HASHTAB_H 1
static __always_inline unsigned long
higher_prime_number(unsigned long n)
{
/* These are primes that are near, but slightly smaller than, a power of two. */
static const unsigned long primes[] = {
7,
13,
31,
61,
127,
251,
509,
1021,
2039,
4093,
8191,
16381,
32749,
65521,
131071,
262139,
524287,
1048573,
2097143,
4194301,
8388593,
16777213,
33554393,
67108859,
134217689,
268435399,
536870909,
1073741789,
/* 4294967291 */
((unsigned long) 2147483647) + ((unsigned long) 2147483644),
};
const unsigned long *low = &primes[0];
const unsigned long *high = &primes[ARRAY_SIZE(primes)];
while (low != high) {
const unsigned long *mid = low + (high - low) / 2;
if (n > *mid)
low = mid + 1;
else
high = mid;
}
#if 0
/* If we've run out of primes, abort. */
if (n > *low) {
fprintf(stderr, "Cannot find prime bigger than %lu\n", n);
abort();
}
#endif
return *low;
}
struct funcdesc_ht
{
/* Table itself */
void **entries;
/* Current size (in entries) of the hash table */
size_t size;
/* Current number of elements */
size_t n_elements;
};
static __always_inline struct funcdesc_ht *
htab_create(void)
{
struct funcdesc_ht *ht = _dl_malloc(sizeof(*ht));
size_t ent_size;
if (!ht)
return NULL;
ht->size = 3;
ent_size = sizeof(void *) * ht->size;
ht->entries = _dl_malloc(ent_size);
if (!ht->entries)
return NULL;
ht->n_elements = 0;
_dl_memset(ht->entries, 0, ent_size);
return ht;
}
/*
* This is only called from _dl_loadaddr_unmap, so it's safe to call
* _dl_free(). See the discussion below.
*/
static __always_inline void
htab_delete(struct funcdesc_ht *htab)
{
size_t i;
for (i = htab->size - 1; i >= 0; i--)
if (htab->entries[i])
_dl_free(htab->entries[i]);
_dl_free(htab->entries);
_dl_free(htab);
}
/*
* Similar to htab_find_slot, but without several unwanted side effects:
* - Does not call htab->eq_f when it finds an existing entry.
* - Does not change the count of elements/searches/collisions in the
* hash table.
* This function also assumes there are no deleted entries in the table.
* HASH is the hash value for the element to be inserted.
*/
static __always_inline void **
find_empty_slot_for_expand(struct funcdesc_ht *htab, int hash)
{
size_t size = htab->size;
unsigned int index = hash % size;
void **slot = htab->entries + index;
int hash2;
if (!*slot)
return slot;
hash2 = 1 + hash % (size - 2);
for (;;) {
index += hash2;
if (index >= size)
index -= size;
slot = htab->entries + index;
if (!*slot)
return slot;
}
}
/*
* The following function changes size of memory allocated for the
* entries and repeatedly inserts the table elements. The occupancy
* of the table after the call will be about 50%. Naturally the hash
* table must already exist. Remember also that the place of the
* table entries is changed. If memory allocation failures are allowed,
* this function will return zero, indicating that the table could not be
* expanded. If all goes well, it will return a non-zero value.
*/
static __always_inline int
htab_expand(struct funcdesc_ht *htab, int (*hash_fn) (void *))
{
void **oentries;
void **olimit;
void **p;
void **nentries;
size_t nsize;
oentries = htab->entries;
olimit = oentries + htab->size;
/*
* Resize only when table after removal of unused elements is either
* too full or too empty.
*/
if (htab->n_elements * 2 > htab->size)
nsize = higher_prime_number(htab->n_elements * 2);
else
nsize = htab->size;
nentries = _dl_malloc(sizeof(*nentries) * nsize);
_dl_memset(nentries, 0, sizeof(*nentries) * nsize);
if (nentries == NULL)
return 0;
htab->entries = nentries;
htab->size = nsize;
p = oentries;
do {
if (*p)
*find_empty_slot_for_expand(htab, hash_fn(*p)) = *p;
p++;
} while (p < olimit);
#if 0
/*
* We can't tell whether this was allocated by the _dl_malloc()
* built into ld.so or malloc() in the main executable or libc,
* and calling free() for something that wasn't malloc()ed could
* do Very Bad Things (TM). Take the conservative approach
* here, potentially wasting as much memory as actually used by
* the hash table, even if multiple growths occur. That's not
* so bad as to require some overengineered solution that would
* enable us to keep track of how it was allocated.
*/
_dl_free(oentries);
#endif
return 1;
}
/*
* This function searches for a hash table slot containing an entry
* equal to the given element. To delete an entry, call this with
* INSERT = 0, then call htab_clear_slot on the slot returned (possibly
* after doing some checks). To insert an entry, call this with
* INSERT = 1, then write the value you want into the returned slot.
* When inserting an entry, NULL may be returned if memory allocation
* fails.
*/
static __always_inline void **
htab_find_slot(struct funcdesc_ht *htab, void *ptr, int insert,
int (*hash_fn)(void *), int (*eq_fn)(void *, void *))
{
unsigned int index;
int hash, hash2;
size_t size;
void **entry;
if (htab->size * 3 <= htab->n_elements * 4 &&
htab_expand(htab, hash_fn) == 0)
return NULL;
hash = hash_fn(ptr);
size = htab->size;
index = hash % size;
entry = &htab->entries[index];
if (!*entry)
goto empty_entry;
else if (eq_fn(*entry, ptr))
return entry;
hash2 = 1 + hash % (size - 2);
for (;;) {
index += hash2;
if (index >= size)
index -= size;
entry = &htab->entries[index];
if (!*entry)
goto empty_entry;
else if (eq_fn(*entry, ptr))
return entry;
}
empty_entry:
if (!insert)
return NULL;
htab->n_elements++;
return entry;
}
#endif
|