summaryrefslogtreecommitdiff
path: root/test/math/ieee.c
diff options
context:
space:
mode:
Diffstat (limited to 'test/math/ieee.c')
-rw-r--r--test/math/ieee.c4119
1 files changed, 0 insertions, 4119 deletions
diff --git a/test/math/ieee.c b/test/math/ieee.c
deleted file mode 100644
index 17efea01c..000000000
--- a/test/math/ieee.c
+++ /dev/null
@@ -1,4119 +0,0 @@
-/* ieee.c
- *
- * Extended precision IEEE binary floating point arithmetic routines
- *
- * Numbers are stored in C language as arrays of 16-bit unsigned
- * short integers. The arguments of the routines are pointers to
- * the arrays.
- *
- *
- * External e type data structure, simulates Intel 8087 chip
- * temporary real format but possibly with a larger significand:
- *
- * NE-1 significand words (least significant word first,
- * most significant bit is normally set)
- * exponent (value = EXONE for 1.0,
- * top bit is the sign)
- *
- *
- * Internal data structure of a number (a "word" is 16 bits):
- *
- * ei[0] sign word (0 for positive, 0xffff for negative)
- * ei[1] biased exponent (value = EXONE for the number 1.0)
- * ei[2] high guard word (always zero after normalization)
- * ei[3]
- * to ei[NI-2] significand (NI-4 significand words,
- * most significant word first,
- * most significant bit is set)
- * ei[NI-1] low guard word (0x8000 bit is rounding place)
- *
- *
- *
- * Routines for external format numbers
- *
- * asctoe( string, e ) ASCII string to extended double e type
- * asctoe64( string, &d ) ASCII string to long double
- * asctoe53( string, &d ) ASCII string to double
- * asctoe24( string, &f ) ASCII string to single
- * asctoeg( string, e, prec ) ASCII string to specified precision
- * e24toe( &f, e ) IEEE single precision to e type
- * e53toe( &d, e ) IEEE double precision to e type
- * e64toe( &d, e ) IEEE long double precision to e type
- * eabs(e) absolute value
- * eadd( a, b, c ) c = b + a
- * eclear(e) e = 0
- * ecmp (a, b) Returns 1 if a > b, 0 if a == b,
- * -1 if a < b, -2 if either a or b is a NaN.
- * ediv( a, b, c ) c = b / a
- * efloor( a, b ) truncate to integer, toward -infinity
- * efrexp( a, exp, s ) extract exponent and significand
- * eifrac( e, &l, frac ) e to long integer and e type fraction
- * euifrac( e, &l, frac ) e to unsigned long integer and e type fraction
- * einfin( e ) set e to infinity, leaving its sign alone
- * eldexp( a, n, b ) multiply by 2**n
- * emov( a, b ) b = a
- * emul( a, b, c ) c = b * a
- * eneg(e) e = -e
- * eround( a, b ) b = nearest integer value to a
- * esub( a, b, c ) c = b - a
- * e24toasc( &f, str, n ) single to ASCII string, n digits after decimal
- * e53toasc( &d, str, n ) double to ASCII string, n digits after decimal
- * e64toasc( &d, str, n ) long double to ASCII string
- * etoasc( e, str, n ) e to ASCII string, n digits after decimal
- * etoe24( e, &f ) convert e type to IEEE single precision
- * etoe53( e, &d ) convert e type to IEEE double precision
- * etoe64( e, &d ) convert e type to IEEE long double precision
- * ltoe( &l, e ) long (32 bit) integer to e type
- * ultoe( &l, e ) unsigned long (32 bit) integer to e type
- * eisneg( e ) 1 if sign bit of e != 0, else 0
- * eisinf( e ) 1 if e has maximum exponent (non-IEEE)
- * or is infinite (IEEE)
- * eisnan( e ) 1 if e is a NaN
- * esqrt( a, b ) b = square root of a
- *
- *
- * Routines for internal format numbers
- *
- * eaddm( ai, bi ) add significands, bi = bi + ai
- * ecleaz(ei) ei = 0
- * ecleazs(ei) set ei = 0 but leave its sign alone
- * ecmpm( ai, bi ) compare significands, return 1, 0, or -1
- * edivm( ai, bi ) divide significands, bi = bi / ai
- * emdnorm(ai,l,s,exp) normalize and round off
- * emovi( a, ai ) convert external a to internal ai
- * emovo( ai, a ) convert internal ai to external a
- * emovz( ai, bi ) bi = ai, low guard word of bi = 0
- * emulm( ai, bi ) multiply significands, bi = bi * ai
- * enormlz(ei) left-justify the significand
- * eshdn1( ai ) shift significand and guards down 1 bit
- * eshdn8( ai ) shift down 8 bits
- * eshdn6( ai ) shift down 16 bits
- * eshift( ai, n ) shift ai n bits up (or down if n < 0)
- * eshup1( ai ) shift significand and guards up 1 bit
- * eshup8( ai ) shift up 8 bits
- * eshup6( ai ) shift up 16 bits
- * esubm( ai, bi ) subtract significands, bi = bi - ai
- *
- *
- * The result is always normalized and rounded to NI-4 word precision
- * after each arithmetic operation.
- *
- * Exception flags are NOT fully supported.
- *
- * Define INFINITY in mconf.h for support of infinity; otherwise a
- * saturation arithmetic is implemented.
- *
- * Define NANS for support of Not-a-Number items; otherwise the
- * arithmetic will never produce a NaN output, and might be confused
- * by a NaN input.
- * If NaN's are supported, the output of ecmp(a,b) is -2 if
- * either a or b is a NaN. This means asking if(ecmp(a,b) < 0)
- * may not be legitimate. Use if(ecmp(a,b) == -1) for less-than
- * if in doubt.
- * Signaling NaN's are NOT supported; they are treated the same
- * as quiet NaN's.
- *
- * Denormals are always supported here where appropriate (e.g., not
- * for conversion to DEC numbers).
- */
-
-/*
- * Revision history:
- *
- * 5 Jan 84 PDP-11 assembly language version
- * 2 Mar 86 fixed bug in asctoq()
- * 6 Dec 86 C language version
- * 30 Aug 88 100 digit version, improved rounding
- * 15 May 92 80-bit long double support
- *
- * Author: S. L. Moshier.
- */
-
-#include <stdio.h>
-/* #include "\usr\include\stdio.h" */
-#include "ehead.h"
-#include "mconf.h"
-
-/* Change UNK into something else. */
-#ifdef UNK
-#undef UNK
-#define IBMPC 1
-#endif
-
-/* NaN's require infinity support. */
-#ifdef NANS
-#ifndef INFINITY
-#define INFINITY
-#endif
-#endif
-
-/* This handles 64-bit long ints. */
-#define LONGBITS (8 * sizeof(long))
-
-/* Control register for rounding precision.
- * This can be set to 80 (if NE=6), 64, 56, 53, or 24 bits.
- */
-int rndprc = NBITS;
-extern int rndprc;
-
-void eaddm(), esubm(), emdnorm(), asctoeg(), enan();
-static void toe24(), toe53(), toe64(), toe113();
-void eremain(), einit(), eiremain();
-int ecmpm(), edivm(), emulm(), eisneg(), eisinf();
-void emovi(), emovo(), emovz(), ecleaz(), eadd1();
-void etodec(), todec(), dectoe();
-int eisnan(), eiisnan();
-
-
-
-void einit()
-{
-}
-
-/*
-; Clear out entire external format number.
-;
-; unsigned short x[];
-; eclear( x );
-*/
-
-void eclear( x )
-register unsigned short *x;
-{
-register int i;
-
-for( i=0; i<NE; i++ )
- *x++ = 0;
-}
-
-
-
-/* Move external format number from a to b.
- *
- * emov( a, b );
- */
-
-void emov( a, b )
-register unsigned short *a, *b;
-{
-register int i;
-
-for( i=0; i<NE; i++ )
- *b++ = *a++;
-}
-
-
-/*
-; Absolute value of external format number
-;
-; short x[NE];
-; eabs( x );
-*/
-
-void eabs(x)
-unsigned short x[]; /* x is the memory address of a short */
-{
-
-x[NE-1] &= 0x7fff; /* sign is top bit of last word of external format */
-}
-
-
-
-
-/*
-; Negate external format number
-;
-; unsigned short x[NE];
-; eneg( x );
-*/
-
-void eneg(x)
-unsigned short x[];
-{
-
-#ifdef NANS
-if( eisnan(x) )
- return;
-#endif
-x[NE-1] ^= 0x8000; /* Toggle the sign bit */
-}
-
-
-
-/* Return 1 if external format number is negative,
- * else return zero.
- */
-int eisneg(x)
-unsigned short x[];
-{
-
-#ifdef NANS
-if( eisnan(x) )
- return( 0 );
-#endif
-if( x[NE-1] & 0x8000 )
- return( 1 );
-else
- return( 0 );
-}
-
-
-/* Return 1 if external format number has maximum possible exponent,
- * else return zero.
- */
-int eisinf(x)
-unsigned short x[];
-{
-
-if( (x[NE-1] & 0x7fff) == 0x7fff )
- {
-#ifdef NANS
- if( eisnan(x) )
- return( 0 );
-#endif
- return( 1 );
- }
-else
- return( 0 );
-}
-
-/* Check if e-type number is not a number.
- */
-int eisnan(x)
-unsigned short x[];
-{
-
-#ifdef NANS
-int i;
-/* NaN has maximum exponent */
-if( (x[NE-1] & 0x7fff) != 0x7fff )
- return (0);
-/* ... and non-zero significand field. */
-for( i=0; i<NE-1; i++ )
- {
- if( *x++ != 0 )
- return (1);
- }
-#endif
-return (0);
-}
-
-/*
-; Fill entire number, including exponent and significand, with
-; largest possible number. These programs implement a saturation
-; value that is an ordinary, legal number. A special value
-; "infinity" may also be implemented; this would require tests
-; for that value and implementation of special rules for arithmetic
-; operations involving inifinity.
-*/
-
-void einfin(x)
-register unsigned short *x;
-{
-register int i;
-
-#ifdef INFINITY
-for( i=0; i<NE-1; i++ )
- *x++ = 0;
-*x |= 32767;
-#else
-for( i=0; i<NE-1; i++ )
- *x++ = 0xffff;
-*x |= 32766;
-if( rndprc < NBITS )
- {
- if (rndprc == 113)
- {
- *(x - 9) = 0;
- *(x - 8) = 0;
- }
- if( rndprc == 64 )
- {
- *(x-5) = 0;
- }
- if( rndprc == 53 )
- {
- *(x-4) = 0xf800;
- }
- else
- {
- *(x-4) = 0;
- *(x-3) = 0;
- *(x-2) = 0xff00;
- }
- }
-#endif
-}
-
-
-
-/* Move in external format number,
- * converting it to internal format.
- */
-void emovi( a, b )
-unsigned short *a, *b;
-{
-register unsigned short *p, *q;
-int i;
-
-q = b;
-p = a + (NE-1); /* point to last word of external number */
-/* get the sign bit */
-if( *p & 0x8000 )
- *q++ = 0xffff;
-else
- *q++ = 0;
-/* get the exponent */
-*q = *p--;
-*q++ &= 0x7fff; /* delete the sign bit */
-#ifdef INFINITY
-if( (*(q-1) & 0x7fff) == 0x7fff )
- {
-#ifdef NANS
- if( eisnan(a) )
- {
- *q++ = 0;
- for( i=3; i<NI; i++ )
- *q++ = *p--;
- return;
- }
-#endif
- for( i=2; i<NI; i++ )
- *q++ = 0;
- return;
- }
-#endif
-/* clear high guard word */
-*q++ = 0;
-/* move in the significand */
-for( i=0; i<NE-1; i++ )
- *q++ = *p--;
-/* clear low guard word */
-*q = 0;
-}
-
-
-/* Move internal format number out,
- * converting it to external format.
- */
-void emovo( a, b )
-unsigned short *a, *b;
-{
-register unsigned short *p, *q;
-unsigned short i;
-
-p = a;
-q = b + (NE-1); /* point to output exponent */
-/* combine sign and exponent */
-i = *p++;
-if( i )
- *q-- = *p++ | 0x8000;
-else
- *q-- = *p++;
-#ifdef INFINITY
-if( *(p-1) == 0x7fff )
- {
-#ifdef NANS
- if( eiisnan(a) )
- {
- enan( b, NBITS );
- return;
- }
-#endif
- einfin(b);
- return;
- }
-#endif
-/* skip over guard word */
-++p;
-/* move the significand */
-for( i=0; i<NE-1; i++ )
- *q-- = *p++;
-}
-
-
-
-
-/* Clear out internal format number.
- */
-
-void ecleaz( xi )
-register unsigned short *xi;
-{
-register int i;
-
-for( i=0; i<NI; i++ )
- *xi++ = 0;
-}
-
-/* same, but don't touch the sign. */
-
-void ecleazs( xi )
-register unsigned short *xi;
-{
-register int i;
-
-++xi;
-for(i=0; i<NI-1; i++)
- *xi++ = 0;
-}
-
-
-
-
-/* Move internal format number from a to b.
- */
-void emovz( a, b )
-register unsigned short *a, *b;
-{
-register int i;
-
-for( i=0; i<NI-1; i++ )
- *b++ = *a++;
-/* clear low guard word */
-*b = 0;
-}
-
-/* Return nonzero if internal format number is a NaN.
- */
-
-int eiisnan (x)
-unsigned short x[];
-{
-int i;
-
-if( (x[E] & 0x7fff) == 0x7fff )
- {
- for( i=M+1; i<NI; i++ )
- {
- if( x[i] != 0 )
- return(1);
- }
- }
-return(0);
-}
-
-#ifdef INFINITY
-/* Return nonzero if internal format number is infinite. */
-
-static int
-eiisinf (x)
- unsigned short x[];
-{
-
-#ifdef NANS
- if (eiisnan (x))
- return (0);
-#endif
- if ((x[E] & 0x7fff) == 0x7fff)
- return (1);
- return (0);
-}
-#endif
-
-/*
-; Compare significands of numbers in internal format.
-; Guard words are included in the comparison.
-;
-; unsigned short a[NI], b[NI];
-; cmpm( a, b );
-;
-; for the significands:
-; returns +1 if a > b
-; 0 if a == b
-; -1 if a < b
-*/
-int ecmpm( a, b )
-register unsigned short *a, *b;
-{
-int i;
-
-a += M; /* skip up to significand area */
-b += M;
-for( i=M; i<NI; i++ )
- {
- if( *a++ != *b++ )
- goto difrnt;
- }
-return(0);
-
-difrnt:
-if( *(--a) > *(--b) )
- return(1);
-else
- return(-1);
-}
-
-
-/*
-; Shift significand down by 1 bit
-*/
-
-void eshdn1(x)
-register unsigned short *x;
-{
-register unsigned short bits;
-int i;
-
-x += M; /* point to significand area */
-
-bits = 0;
-for( i=M; i<NI; i++ )
- {
- if( *x & 1 )
- bits |= 1;
- *x >>= 1;
- if( bits & 2 )
- *x |= 0x8000;
- bits <<= 1;
- ++x;
- }
-}
-
-
-
-/*
-; Shift significand up by 1 bit
-*/
-
-void eshup1(x)
-register unsigned short *x;
-{
-register unsigned short bits;
-int i;
-
-x += NI-1;
-bits = 0;
-
-for( i=M; i<NI; i++ )
- {
- if( *x & 0x8000 )
- bits |= 1;
- *x <<= 1;
- if( bits & 2 )
- *x |= 1;
- bits <<= 1;
- --x;
- }
-}
-
-
-
-/*
-; Shift significand down by 8 bits
-*/
-
-void eshdn8(x)
-register unsigned short *x;
-{
-register unsigned short newbyt, oldbyt;
-int i;
-
-x += M;
-oldbyt = 0;
-for( i=M; i<NI; i++ )
- {
- newbyt = *x << 8;
- *x >>= 8;
- *x |= oldbyt;
- oldbyt = newbyt;
- ++x;
- }
-}
-
-/*
-; Shift significand up by 8 bits
-*/
-
-void eshup8(x)
-register unsigned short *x;
-{
-int i;
-register unsigned short newbyt, oldbyt;
-
-x += NI-1;
-oldbyt = 0;
-
-for( i=M; i<NI; i++ )
- {
- newbyt = *x >> 8;
- *x <<= 8;
- *x |= oldbyt;
- oldbyt = newbyt;
- --x;
- }
-}
-
-/*
-; Shift significand up by 16 bits
-*/
-
-void eshup6(x)
-register unsigned short *x;
-{
-int i;
-register unsigned short *p;
-
-p = x + M;
-x += M + 1;
-
-for( i=M; i<NI-1; i++ )
- *p++ = *x++;
-
-*p = 0;
-}
-
-/*
-; Shift significand down by 16 bits
-*/
-
-void eshdn6(x)
-register unsigned short *x;
-{
-int i;
-register unsigned short *p;
-
-x += NI-1;
-p = x + 1;
-
-for( i=M; i<NI-1; i++ )
- *(--p) = *(--x);
-
-*(--p) = 0;
-}
-
-/*
-; Add significands
-; x + y replaces y
-*/
-
-void eaddm( x, y )
-unsigned short *x, *y;
-{
-register unsigned long a;
-int i;
-unsigned int carry;
-
-x += NI-1;
-y += NI-1;
-carry = 0;
-for( i=M; i<NI; i++ )
- {
- a = (unsigned long )(*x) + (unsigned long )(*y) + carry;
- if( a & 0x10000 )
- carry = 1;
- else
- carry = 0;
- *y = (unsigned short )a;
- --x;
- --y;
- }
-}
-
-/*
-; Subtract significands
-; y - x replaces y
-*/
-
-void esubm( x, y )
-unsigned short *x, *y;
-{
-unsigned long a;
-int i;
-unsigned int carry;
-
-x += NI-1;
-y += NI-1;
-carry = 0;
-for( i=M; i<NI; i++ )
- {
- a = (unsigned long )(*y) - (unsigned long )(*x) - carry;
- if( a & 0x10000 )
- carry = 1;
- else
- carry = 0;
- *y = (unsigned short )a;
- --x;
- --y;
- }
-}
-
-
-/* Divide significands */
-
-static unsigned short equot[NI] = {0}; /* was static */
-
-#if 0
-int edivm( den, num )
-unsigned short den[], num[];
-{
-int i;
-register unsigned short *p, *q;
-unsigned short j;
-
-p = &equot[0];
-*p++ = num[0];
-*p++ = num[1];
-
-for( i=M; i<NI; i++ )
- {
- *p++ = 0;
- }
-
-/* Use faster compare and subtraction if denominator
- * has only 15 bits of significance.
- */
-p = &den[M+2];
-if( *p++ == 0 )
- {
- for( i=M+3; i<NI; i++ )
- {
- if( *p++ != 0 )
- goto fulldiv;
- }
- if( (den[M+1] & 1) != 0 )
- goto fulldiv;
- eshdn1(num);
- eshdn1(den);
-
- p = &den[M+1];
- q = &num[M+1];
-
- for( i=0; i<NBITS+2; i++ )
- {
- if( *p <= *q )
- {
- *q -= *p;
- j = 1;
- }
- else
- {
- j = 0;
- }
- eshup1(equot);
- equot[NI-2] |= j;
- eshup1(num);
- }
- goto divdon;
- }
-
-/* The number of quotient bits to calculate is
- * NBITS + 1 scaling guard bit + 1 roundoff bit.
- */
-fulldiv:
-
-p = &equot[NI-2];
-for( i=0; i<NBITS+2; i++ )
- {
- if( ecmpm(den,num) <= 0 )
- {
- esubm(den, num);
- j = 1; /* quotient bit = 1 */
- }
- else
- j = 0;
- eshup1(equot);
- *p |= j;
- eshup1(num);
- }
-
-divdon:
-
-eshdn1( equot );
-eshdn1( equot );
-
-/* test for nonzero remainder after roundoff bit */
-p = &num[M];
-j = 0;
-for( i=M; i<NI; i++ )
- {
- j |= *p++;
- }
-if( j )
- j = 1;
-
-
-for( i=0; i<NI; i++ )
- num[i] = equot[i];
-return( (int )j );
-}
-
-/* Multiply significands */
-int emulm( a, b )
-unsigned short a[], b[];
-{
-unsigned short *p, *q;
-int i, j, k;
-
-equot[0] = b[0];
-equot[1] = b[1];
-for( i=M; i<NI; i++ )
- equot[i] = 0;
-
-p = &a[NI-2];
-k = NBITS;
-while( *p == 0 ) /* significand is not supposed to be all zero */
- {
- eshdn6(a);
- k -= 16;
- }
-if( (*p & 0xff) == 0 )
- {
- eshdn8(a);
- k -= 8;
- }
-
-q = &equot[NI-1];
-j = 0;
-for( i=0; i<k; i++ )
- {
- if( *p & 1 )
- eaddm(b, equot);
-/* remember if there were any nonzero bits shifted out */
- if( *q & 1 )
- j |= 1;
- eshdn1(a);
- eshdn1(equot);
- }
-
-for( i=0; i<NI; i++ )
- b[i] = equot[i];
-
-/* return flag for lost nonzero bits */
-return(j);
-}
-
-#else
-
-/* Multiply significand of e-type number b
-by 16-bit quantity a, e-type result to c. */
-
-void m16m( a, b, c )
-unsigned short a;
-unsigned short b[], c[];
-{
-register unsigned short *pp;
-register unsigned long carry;
-unsigned short *ps;
-unsigned short p[NI];
-unsigned long aa, m;
-int i;
-
-aa = a;
-pp = &p[NI-2];
-*pp++ = 0;
-*pp = 0;
-ps = &b[NI-1];
-
-for( i=M+1; i<NI; i++ )
- {
- if( *ps == 0 )
- {
- --ps;
- --pp;
- *(pp-1) = 0;
- }
- else
- {
- m = (unsigned long) aa * *ps--;
- carry = (m & 0xffff) + *pp;
- *pp-- = (unsigned short )carry;
- carry = (carry >> 16) + (m >> 16) + *pp;
- *pp = (unsigned short )carry;
- *(pp-1) = carry >> 16;
- }
- }
-for( i=M; i<NI; i++ )
- c[i] = p[i];
-}
-
-
-/* Divide significands. Neither the numerator nor the denominator
-is permitted to have its high guard word nonzero. */
-
-
-int edivm( den, num )
-unsigned short den[], num[];
-{
-int i;
-register unsigned short *p;
-unsigned long tnum;
-unsigned short j, tdenm, tquot;
-unsigned short tprod[NI+1];
-
-p = &equot[0];
-*p++ = num[0];
-*p++ = num[1];
-
-for( i=M; i<NI; i++ )
- {
- *p++ = 0;
- }
-eshdn1( num );
-tdenm = den[M+1];
-for( i=M; i<NI; i++ )
- {
- /* Find trial quotient digit (the radix is 65536). */
- tnum = (((unsigned long) num[M]) << 16) + num[M+1];
-
- /* Do not execute the divide instruction if it will overflow. */
- if( (tdenm * 0xffffL) < tnum )
- tquot = 0xffff;
- else
- tquot = tnum / tdenm;
-
- /* Prove that the divide worked. */
-/*
- tcheck = (unsigned long )tquot * tdenm;
- if( tnum - tcheck > tdenm )
- tquot = 0xffff;
-*/
- /* Multiply denominator by trial quotient digit. */
- m16m( tquot, den, tprod );
- /* The quotient digit may have been overestimated. */
- if( ecmpm( tprod, num ) > 0 )
- {
- tquot -= 1;
- esubm( den, tprod );
- if( ecmpm( tprod, num ) > 0 )
- {
- tquot -= 1;
- esubm( den, tprod );
- }
- }
-/*
- if( ecmpm( tprod, num ) > 0 )
- {
- eshow( "tprod", tprod );
- eshow( "num ", num );
- printf( "tnum = %08lx, tden = %04x, tquot = %04x\n",
- tnum, den[M+1], tquot );
- }
-*/
- esubm( tprod, num );
-/*
- if( ecmpm( num, den ) >= 0 )
- {
- eshow( "num ", num );
- eshow( "den ", den );
- printf( "tnum = %08lx, tden = %04x, tquot = %04x\n",
- tnum, den[M+1], tquot );
- }
-*/
- equot[i] = tquot;
- eshup6(num);
- }
-/* test for nonzero remainder after roundoff bit */
-p = &num[M];
-j = 0;
-for( i=M; i<NI; i++ )
- {
- j |= *p++;
- }
-if( j )
- j = 1;
-
-for( i=0; i<NI; i++ )
- num[i] = equot[i];
-
-return( (int )j );
-}
-
-
-
-/* Multiply significands */
-int emulm( a, b )
-unsigned short a[], b[];
-{
-unsigned short *p, *q;
-unsigned short pprod[NI];
-unsigned short j;
-int i;
-
-equot[0] = b[0];
-equot[1] = b[1];
-for( i=M; i<NI; i++ )
- equot[i] = 0;
-
-j = 0;
-p = &a[NI-1];
-q = &equot[NI-1];
-for( i=M+1; i<NI; i++ )
- {
- if( *p == 0 )
- {
- --p;
- }
- else
- {
- m16m( *p--, b, pprod );
- eaddm(pprod, equot);
- }
- j |= *q;
- eshdn6(equot);
- }
-
-for( i=0; i<NI; i++ )
- b[i] = equot[i];
-
-/* return flag for lost nonzero bits */
-return( (int)j );
-}
-
-
-/*
-eshow(str, x)
-char *str;
-unsigned short *x;
-{
-int i;
-
-printf( "%s ", str );
-for( i=0; i<NI; i++ )
- printf( "%04x ", *x++ );
-printf( "\n" );
-}
-*/
-#endif
-
-
-
-/*
- * Normalize and round off.
- *
- * The internal format number to be rounded is "s".
- * Input "lost" indicates whether the number is exact.
- * This is the so-called sticky bit.
- *
- * Input "subflg" indicates whether the number was obtained
- * by a subtraction operation. In that case if lost is nonzero
- * then the number is slightly smaller than indicated.
- *
- * Input "exp" is the biased exponent, which may be negative.
- * the exponent field of "s" is ignored but is replaced by
- * "exp" as adjusted by normalization and rounding.
- *
- * Input "rcntrl" is the rounding control.
- */
-
-static int rlast = -1;
-static int rw = 0;
-static unsigned short rmsk = 0;
-static unsigned short rmbit = 0;
-static unsigned short rebit = 0;
-static int re = 0;
-static unsigned short rbit[NI] = {0,0,0,0,0,0,0,0};
-
-void emdnorm( s, lost, subflg, exp, rcntrl )
-unsigned short s[];
-int lost;
-int subflg;
-long exp;
-int rcntrl;
-{
-int i, j;
-unsigned short r;
-
-/* Normalize */
-j = enormlz( s );
-
-/* a blank significand could mean either zero or infinity. */
-#ifndef INFINITY
-if( j > NBITS )
- {
- ecleazs( s );
- return;
- }
-#endif
-exp -= j;
-#ifndef INFINITY
-if( exp >= 32767L )
- goto overf;
-#else
-if( (j > NBITS) && (exp < 32767L) )
- {
- ecleazs( s );
- return;
- }
-#endif
-if( exp < 0L )
- {
- if( exp > (long )(-NBITS-1) )
- {
- j = (int )exp;
- i = eshift( s, j );
- if( i )
- lost = 1;
- }
- else
- {
- ecleazs( s );
- return;
- }
- }
-/* Round off, unless told not to by rcntrl. */
-if( rcntrl == 0 )
- goto mdfin;
-/* Set up rounding parameters if the control register changed. */
-if( rndprc != rlast )
- {
- ecleaz( rbit );
- switch( rndprc )
- {
- default:
- case NBITS:
- rw = NI-1; /* low guard word */
- rmsk = 0xffff;
- rmbit = 0x8000;
- rebit = 1;
- re = rw - 1;
- break;
- case 113:
- rw = 10;
- rmsk = 0x7fff;
- rmbit = 0x4000;
- rebit = 0x8000;
- re = rw;
- break;
- case 64:
- rw = 7;
- rmsk = 0xffff;
- rmbit = 0x8000;
- rebit = 1;
- re = rw-1;
- break;
-/* For DEC arithmetic */
- case 56:
- rw = 6;
- rmsk = 0xff;
- rmbit = 0x80;
- rebit = 0x100;
- re = rw;
- break;
- case 53:
- rw = 6;
- rmsk = 0x7ff;
- rmbit = 0x0400;
- rebit = 0x800;
- re = rw;
- break;
- case 24:
- rw = 4;
- rmsk = 0xff;
- rmbit = 0x80;
- rebit = 0x100;
- re = rw;
- break;
- }
- rbit[re] = rebit;
- rlast = rndprc;
- }
-
-/* Shift down 1 temporarily if the data structure has an implied
- * most significant bit and the number is denormal.
- * For rndprc = 64 or NBITS, there is no implied bit.
- * But Intel long double denormals lose one bit of significance even so.
- */
-#if IBMPC
-if( (exp <= 0) && (rndprc != NBITS) )
-#else
-if( (exp <= 0) && (rndprc != 64) && (rndprc != NBITS) )
-#endif
- {
- lost |= s[NI-1] & 1;
- eshdn1(s);
- }
-/* Clear out all bits below the rounding bit,
- * remembering in r if any were nonzero.
- */
-r = s[rw] & rmsk;
-if( rndprc < NBITS )
- {
- i = rw + 1;
- while( i < NI )
- {
- if( s[i] )
- r |= 1;
- s[i] = 0;
- ++i;
- }
- }
-s[rw] &= ~rmsk;
-if( (r & rmbit) != 0 )
- {
- if( r == rmbit )
- {
- if( lost == 0 )
- { /* round to even */
- if( (s[re] & rebit) == 0 )
- goto mddone;
- }
- else
- {
- if( subflg != 0 )
- goto mddone;
- }
- }
- eaddm( rbit, s );
- }
-mddone:
-#if IBMPC
-if( (exp <= 0) && (rndprc != NBITS) )
-#else
-if( (exp <= 0) && (rndprc != 64) && (rndprc != NBITS) )
-#endif
- {
- eshup1(s);
- }
-if( s[2] != 0 )
- { /* overflow on roundoff */
- eshdn1(s);
- exp += 1;
- }
-mdfin:
-s[NI-1] = 0;
-if( exp >= 32767L )
- {
-#ifndef INFINITY
-overf:
-#endif
-#ifdef INFINITY
- s[1] = 32767;
- for( i=2; i<NI-1; i++ )
- s[i] = 0;
-#else
- s[1] = 32766;
- s[2] = 0;
- for( i=M+1; i<NI-1; i++ )
- s[i] = 0xffff;
- s[NI-1] = 0;
- if( (rndprc < 64) || (rndprc == 113) )
- {
- s[rw] &= ~rmsk;
- if( rndprc == 24 )
- {
- s[5] = 0;
- s[6] = 0;
- }
- }
-#endif
- return;
- }
-if( exp < 0 )
- s[1] = 0;
-else
- s[1] = (unsigned short )exp;
-}
-
-
-
-/*
-; Subtract external format numbers.
-;
-; unsigned short a[NE], b[NE], c[NE];
-; esub( a, b, c ); c = b - a
-*/
-
-static int subflg = 0;
-
-void esub( a, b, c )
-unsigned short *a, *b, *c;
-{
-
-#ifdef NANS
-if( eisnan(a) )
- {
- emov (a, c);
- return;
- }
-if( eisnan(b) )
- {
- emov(b,c);
- return;
- }
-/* Infinity minus infinity is a NaN.
- * Test for subtracting infinities of the same sign.
- */
-if( eisinf(a) && eisinf(b) && ((eisneg (a) ^ eisneg (b)) == 0))
- {
- mtherr( "esub", DOMAIN );
- enan( c, NBITS );
- return;
- }
-#endif
-subflg = 1;
-eadd1( a, b, c );
-}
-
-
-/*
-; Add.
-;
-; unsigned short a[NE], b[NE], c[NE];
-; eadd( a, b, c ); c = b + a
-*/
-void eadd( a, b, c )
-unsigned short *a, *b, *c;
-{
-
-#ifdef NANS
-/* NaN plus anything is a NaN. */
-if( eisnan(a) )
- {
- emov(a,c);
- return;
- }
-if( eisnan(b) )
- {
- emov(b,c);
- return;
- }
-/* Infinity minus infinity is a NaN.
- * Test for adding infinities of opposite signs.
- */
-if( eisinf(a) && eisinf(b)
- && ((eisneg(a) ^ eisneg(b)) != 0) )
- {
- mtherr( "eadd", DOMAIN );
- enan( c, NBITS );
- return;
- }
-#endif
-subflg = 0;
-eadd1( a, b, c );
-}
-
-void eadd1( a, b, c )
-unsigned short *a, *b, *c;
-{
-unsigned short ai[NI], bi[NI], ci[NI];
-int i, lost, j, k;
-long lt, lta, ltb;
-
-#ifdef INFINITY
-if( eisinf(a) )
- {
- emov(a,c);
- if( subflg )
- eneg(c);
- return;
- }
-if( eisinf(b) )
- {
- emov(b,c);
- return;
- }
-#endif
-emovi( a, ai );
-emovi( b, bi );
-if( subflg )
- ai[0] = ~ai[0];
-
-/* compare exponents */
-lta = ai[E];
-ltb = bi[E];
-lt = lta - ltb;
-if( lt > 0L )
- { /* put the larger number in bi */
- emovz( bi, ci );
- emovz( ai, bi );
- emovz( ci, ai );
- ltb = bi[E];
- lt = -lt;
- }
-lost = 0;
-if( lt != 0L )
- {
- if( lt < (long )(-NBITS-1) )
- goto done; /* answer same as larger addend */
- k = (int )lt;
- lost = eshift( ai, k ); /* shift the smaller number down */
- }
-else
- {
-/* exponents were the same, so must compare significands */
- i = ecmpm( ai, bi );
- if( i == 0 )
- { /* the numbers are identical in magnitude */
- /* if different signs, result is zero */
- if( ai[0] != bi[0] )
- {
- eclear(c);
- return;
- }
- /* if same sign, result is double */
- /* double denomalized tiny number */
- if( (bi[E] == 0) && ((bi[3] & 0x8000) == 0) )
- {
- eshup1( bi );
- goto done;
- }
- /* add 1 to exponent unless both are zero! */
- for( j=1; j<NI-1; j++ )
- {
- if( bi[j] != 0 )
- {
-/* This could overflow, but let emovo take care of that. */
- ltb += 1;
- break;
- }
- }
- bi[E] = (unsigned short )ltb;
- goto done;
- }
- if( i > 0 )
- { /* put the larger number in bi */
- emovz( bi, ci );
- emovz( ai, bi );
- emovz( ci, ai );
- }
- }
-if( ai[0] == bi[0] )
- {
- eaddm( ai, bi );
- subflg = 0;
- }