summaryrefslogtreecommitdiff
path: root/libm/s_erf.c
diff options
context:
space:
mode:
Diffstat (limited to 'libm/s_erf.c')
-rw-r--r--libm/s_erf.c34
1 files changed, 17 insertions, 17 deletions
diff --git a/libm/s_erf.c b/libm/s_erf.c
index e0bf2a115..44568abb2 100644
--- a/libm/s_erf.c
+++ b/libm/s_erf.c
@@ -5,7 +5,7 @@
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
+ * software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
@@ -19,11 +19,11 @@ static char rcsid[] = "$NetBSD: s_erf.c,v 1.8 1995/05/10 20:47:05 jtc Exp $";
* x
* 2 |\
* erf(x) = --------- | exp(-t*t)dt
- * sqrt(pi) \|
+ * sqrt(pi) \|
* 0
*
* erfc(x) = 1-erf(x)
- * Note that
+ * Note that
* erf(-x) = -erf(x)
* erfc(-x) = 2 - erfc(x)
*
@@ -36,7 +36,7 @@ static char rcsid[] = "$NetBSD: s_erf.c,v 1.8 1995/05/10 20:47:05 jtc Exp $";
* Q is an odd poly of degree 10.
* -57.90
* | R - (erf(x)-x)/x | <= 2
- *
+ *
*
* Remark. The formula is derived by noting
* erf(x) = (2/sqrt(pi))*(x - x^3/3 + x^5/10 - x^7/42 + ....)
@@ -59,14 +59,14 @@ static char rcsid[] = "$NetBSD: s_erf.c,v 1.8 1995/05/10 20:47:05 jtc Exp $";
* That is, we use rational approximation to approximate
* erf(1+s) - (c = (single)0.84506291151)
* Note that |P1/Q1|< 0.078 for x in [0.84375,1.25]
- * where
+ * where
* P1(s) = degree 6 poly in s
* Q1(s) = degree 6 poly in s
*
- * 3. For x in [1.25,1/0.35(~2.857143)],
+ * 3. For x in [1.25,1/0.35(~2.857143)],
* erfc(x) = (1/x)*exp(-x*x-0.5625+R1/S1)
* erf(x) = 1 - erfc(x)
- * where
+ * where
* R1(z) = degree 7 poly in z, (z=1/x^2)
* S1(z) = degree 8 poly in z
*
@@ -84,7 +84,7 @@ static char rcsid[] = "$NetBSD: s_erf.c,v 1.8 1995/05/10 20:47:05 jtc Exp $";
* To compute exp(-x*x-0.5625+R/S), let s be a single
* precision number and s := x; then
* -x*x = -s*s + (s-x)*(s+x)
- * exp(-x*x-0.5626+R/S) =
+ * exp(-x*x-0.5626+R/S) =
* exp(-s*s-0.5625)*exp((s-x)*(s+x)+R/S);
* Note2:
* Here 4 and 5 make use of the asymptotic series
@@ -104,7 +104,7 @@ static char rcsid[] = "$NetBSD: s_erf.c,v 1.8 1995/05/10 20:47:05 jtc Exp $";
*
* 7. Special case:
* erf(0) = 0, erf(inf) = 1, erf(-inf) = -1,
- * erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2,
+ * erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2,
* erfc/erf(NaN) is NaN
*/
@@ -139,7 +139,7 @@ qq3 = 5.08130628187576562776e-03, /* 0x3F74D022, 0xC4D36B0F */
qq4 = 1.32494738004321644526e-04, /* 0x3F215DC9, 0x221C1A10 */
qq5 = -3.96022827877536812320e-06, /* 0xBED09C43, 0x42A26120 */
/*
- * Coefficients for approximation to erf in [0.84375,1.25]
+ * Coefficients for approximation to erf in [0.84375,1.25]
*/
pa0 = -2.36211856075265944077e-03, /* 0xBF6359B8, 0xBEF77538 */
pa1 = 4.14856118683748331666e-01, /* 0x3FDA8D00, 0xAD92B34D */
@@ -192,9 +192,9 @@ sb6 = 4.74528541206955367215e+02, /* 0x407DA874, 0xE79FE763 */
sb7 = -2.24409524465858183362e+01; /* 0xC03670E2, 0x42712D62 */
#ifdef __STDC__
- double erf(double x)
+ double erf(double x)
#else
- double erf(x)
+ double erf(x)
double x;
#endif
{
@@ -209,7 +209,7 @@ sb7 = -2.24409524465858183362e+01; /* 0xC03670E2, 0x42712D62 */
if(ix < 0x3feb0000) { /* |x|<0.84375 */
if(ix < 0x3e300000) { /* |x|<2**-28 */
- if (ix < 0x00800000)
+ if (ix < 0x00800000)
return 0.125*(8.0*x+efx8*x); /*avoid underflow */
return x + efx*x;
}
@@ -241,16 +241,16 @@ sb7 = -2.24409524465858183362e+01; /* 0xC03670E2, 0x42712D62 */
S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(
sb5+s*(sb6+s*sb7))))));
}
- z = x;
+ z = x;
SET_LOW_WORD(z,0);
r = __ieee754_exp(-z*z-0.5625)*__ieee754_exp((z-x)*(z+x)+R/S);
if(hx>=0) return one-r/x; else return r/x-one;
}
#ifdef __STDC__
- double erfc(double x)
+ double erfc(double x)
#else
- double erfc(x)
+ double erfc(x)
double x;
#endif
{
@@ -283,7 +283,7 @@ sb7 = -2.24409524465858183362e+01; /* 0xC03670E2, 0x42712D62 */
P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
if(hx>=0) {
- z = one-erx; return z - P/Q;
+ z = one-erx; return z - P/Q;
} else {
z = erx+P/Q; return one+z;
}