summaryrefslogtreecommitdiff
path: root/libm/ldouble/tanl.c
diff options
context:
space:
mode:
Diffstat (limited to 'libm/ldouble/tanl.c')
-rw-r--r--libm/ldouble/tanl.c279
1 files changed, 279 insertions, 0 deletions
diff --git a/libm/ldouble/tanl.c b/libm/ldouble/tanl.c
new file mode 100644
index 000000000..e546dd664
--- /dev/null
+++ b/libm/ldouble/tanl.c
@@ -0,0 +1,279 @@
+/* tanl.c
+ *
+ * Circular tangent, long double precision
+ *
+ *
+ *
+ * SYNOPSIS:
+ *
+ * long double x, y, tanl();
+ *
+ * y = tanl( x );
+ *
+ *
+ *
+ * DESCRIPTION:
+ *
+ * Returns the circular tangent of the radian argument x.
+ *
+ * Range reduction is modulo pi/4. A rational function
+ * x + x**3 P(x**2)/Q(x**2)
+ * is employed in the basic interval [0, pi/4].
+ *
+ *
+ *
+ * ACCURACY:
+ *
+ * Relative error:
+ * arithmetic domain # trials peak rms
+ * IEEE +-1.07e9 30000 1.9e-19 4.8e-20
+ *
+ * ERROR MESSAGES:
+ *
+ * message condition value returned
+ * tan total loss x > 2^39 0.0
+ *
+ */
+ /* cotl.c
+ *
+ * Circular cotangent, long double precision
+ *
+ *
+ *
+ * SYNOPSIS:
+ *
+ * long double x, y, cotl();
+ *
+ * y = cotl( x );
+ *
+ *
+ *
+ * DESCRIPTION:
+ *
+ * Returns the circular cotangent of the radian argument x.
+ *
+ * Range reduction is modulo pi/4. A rational function
+ * x + x**3 P(x**2)/Q(x**2)
+ * is employed in the basic interval [0, pi/4].
+ *
+ *
+ *
+ * ACCURACY:
+ *
+ * Relative error:
+ * arithmetic domain # trials peak rms
+ * IEEE +-1.07e9 30000 1.9e-19 5.1e-20
+ *
+ *
+ * ERROR MESSAGES:
+ *
+ * message condition value returned
+ * cot total loss x > 2^39 0.0
+ * cot singularity x = 0 INFINITYL
+ *
+ */
+
+/*
+Cephes Math Library Release 2.7: May, 1998
+Copyright 1984, 1990, 1998 by Stephen L. Moshier
+*/
+
+#include <math.h>
+
+#ifdef UNK
+static long double P[] = {
+-1.3093693918138377764608E4L,
+ 1.1535166483858741613983E6L,
+-1.7956525197648487798769E7L,
+};
+static long double Q[] = {
+/* 1.0000000000000000000000E0L,*/
+ 1.3681296347069295467845E4L,
+-1.3208923444021096744731E6L,
+ 2.5008380182335791583922E7L,
+-5.3869575592945462988123E7L,
+};
+static long double DP1 = 7.853981554508209228515625E-1L;
+static long double DP2 = 7.946627356147928367136046290398E-9L;
+static long double DP3 = 3.061616997868382943065164830688E-17L;
+#endif
+
+
+#ifdef IBMPC
+static short P[] = {
+0xbc1c,0x79f9,0xc692,0xcc96,0xc00c, XPD
+0xe5b1,0xe4ee,0x652f,0x8ccf,0x4013, XPD
+0xaf9a,0x4c8b,0x5699,0x88ff,0xc017, XPD
+};
+static short Q[] = {
+/*0x0000,0x0000,0x0000,0x8000,0x3fff,*/
+0x8ed4,0x9b2b,0x2f75,0xd5c5,0x400c, XPD
+0xadcd,0x55e4,0xe2c1,0xa13d,0xc013, XPD
+0x7adf,0x56c7,0x7e17,0xbecc,0x4017, XPD
+0x86f6,0xf2d1,0x01e5,0xcd7f,0xc018, XPD
+};
+static short P1[] = {0x0000,0x0000,0xda80,0xc90f,0x3ffe, XPD};
+static short P2[] = {0x0000,0x0000,0xa300,0x8885,0x3fe4, XPD};
+static short P3[] = {0x3707,0xa2e0,0x3198,0x8d31,0x3fc8, XPD};
+#define DP1 *(long double *)P1
+#define DP2 *(long double *)P2
+#define DP3 *(long double *)P3
+#endif
+
+#ifdef MIEEE
+static long P[] = {
+0xc00c0000,0xcc96c692,0x79f9bc1c,
+0x40130000,0x8ccf652f,0xe4eee5b1,
+0xc0170000,0x88ff5699,0x4c8baf9a,
+};
+static long Q[] = {
+/*0x3fff0000,0x80000000,0x00000000,*/
+0x400c0000,0xd5c52f75,0x9b2b8ed4,
+0xc0130000,0xa13de2c1,0x55e4adcd,
+0x40170000,0xbecc7e17,0x56c77adf,
+0xc0180000,0xcd7f01e5,0xf2d186f6,
+};
+static long P1[] = {0x3ffe0000,0xc90fda80,0x00000000};
+static long P2[] = {0x3fe40000,0x8885a300,0x00000000};
+static long P3[] = {0x3fc80000,0x8d313198,0xa2e03707};
+#define DP1 *(long double *)P1
+#define DP2 *(long double *)P2
+#define DP3 *(long double *)P3
+#endif
+
+static long double lossth = 5.49755813888e11L; /* 2^39 */
+extern long double PIO4L;
+extern long double MAXNUML;
+
+#ifdef ANSIPROT
+extern long double polevll ( long double, void *, int );
+extern long double p1evll ( long double, void *, int );
+extern long double floorl ( long double );
+extern long double ldexpl ( long double, int );
+extern int isnanl ( long double );
+extern int isfinitel ( long double );
+static long double tancotl( long double, int );
+#else
+long double polevll(), p1evll(), floorl(), ldexpl(), isnanl(), isfinitel();
+static long double tancotl();
+#endif
+#ifdef INFINITIES
+extern long double INFINITYL;
+#endif
+#ifdef NANS
+extern long double NANL;
+#endif
+
+long double tanl(x)
+long double x;
+{
+
+#ifdef NANS
+if( isnanl(x) )
+ return(x);
+#endif
+#ifdef MINUSZERO
+if( x == 0.0L )
+ return(x);
+#endif
+#ifdef NANS
+if( !isfinitel(x) )
+ {
+ mtherr( "tanl", DOMAIN );
+ return(NANL);
+ }
+#endif
+return( tancotl(x,0) );
+}
+
+
+long double cotl(x)
+long double x;
+{
+
+if( x == 0.0L )
+ {
+ mtherr( "cotl", SING );
+#ifdef INFINITIES
+ return( INFINITYL );
+#else
+ return( MAXNUML );
+#endif
+ }
+return( tancotl(x,1) );
+}
+
+
+static long double tancotl( xx, cotflg )
+long double xx;
+int cotflg;
+{
+long double x, y, z, zz;
+int j, sign;
+
+/* make argument positive but save the sign */
+if( xx < 0.0L )
+ {
+ x = -xx;
+ sign = -1;
+ }
+else
+ {
+ x = xx;
+ sign = 1;
+ }
+
+if( x > lossth )
+ {
+ if( cotflg )
+ mtherr( "cotl", TLOSS );
+ else
+ mtherr( "tanl", TLOSS );
+ return(0.0L);
+ }
+
+/* compute x mod PIO4 */
+y = floorl( x/PIO4L );
+
+/* strip high bits of integer part */
+z = ldexpl( y, -4 );
+z = floorl(z); /* integer part of y/16 */
+z = y - ldexpl( z, 4 ); /* y - 16 * (y/16) */
+
+/* integer and fractional part modulo one octant */
+j = z;
+
+/* map zeros and singularities to origin */
+if( j & 1 )
+ {
+ j += 1;
+ y += 1.0L;
+ }
+
+z = ((x - y * DP1) - y * DP2) - y * DP3;
+
+zz = z * z;
+
+if( zz > 1.0e-20L )
+ y = z + z * (zz * polevll( zz, P, 2 )/p1evll(zz, Q, 4));
+else
+ y = z;
+
+if( j & 2 )
+ {
+ if( cotflg )
+ y = -y;
+ else
+ y = -1.0L/y;
+ }
+else
+ {
+ if( cotflg )
+ y = 1.0L/y;
+ }
+
+if( sign < 0 )
+ y = -y;
+
+return( y );
+}