summaryrefslogtreecommitdiff
path: root/libm/ldouble/polevll.c
diff options
context:
space:
mode:
Diffstat (limited to 'libm/ldouble/polevll.c')
-rw-r--r--libm/ldouble/polevll.c182
1 files changed, 0 insertions, 182 deletions
diff --git a/libm/ldouble/polevll.c b/libm/ldouble/polevll.c
deleted file mode 100644
index ce37c6d9d..000000000
--- a/libm/ldouble/polevll.c
+++ /dev/null
@@ -1,182 +0,0 @@
-/* polevll.c
- * p1evll.c
- *
- * Evaluate polynomial
- *
- *
- *
- * SYNOPSIS:
- *
- * int N;
- * long double x, y, coef[N+1], polevl[];
- *
- * y = polevll( x, coef, N );
- *
- *
- *
- * DESCRIPTION:
- *
- * Evaluates polynomial of degree N:
- *
- * 2 N
- * y = C + C x + C x +...+ C x
- * 0 1 2 N
- *
- * Coefficients are stored in reverse order:
- *
- * coef[0] = C , ..., coef[N] = C .
- * N 0
- *
- * The function p1evll() assumes that coef[N] = 1.0 and is
- * omitted from the array. Its calling arguments are
- * otherwise the same as polevll().
- *
- * This module also contains the following globally declared constants:
- * MAXNUML = 1.189731495357231765021263853E4932L;
- * MACHEPL = 5.42101086242752217003726400434970855712890625E-20L;
- * MAXLOGL = 1.1356523406294143949492E4L;
- * MINLOGL = -1.1355137111933024058873E4L;
- * LOGE2L = 6.9314718055994530941723E-1L;
- * LOG2EL = 1.4426950408889634073599E0L;
- * PIL = 3.1415926535897932384626L;
- * PIO2L = 1.5707963267948966192313L;
- * PIO4L = 7.8539816339744830961566E-1L;
- *
- * SPEED:
- *
- * In the interest of speed, there are no checks for out
- * of bounds arithmetic. This routine is used by most of
- * the functions in the library. Depending on available
- * equipment features, the user may wish to rewrite the
- * program in microcode or assembly language.
- *
- */
-
-
-/*
-Cephes Math Library Release 2.2: July, 1992
-Copyright 1984, 1987, 1988, 1992 by Stephen L. Moshier
-Direct inquiries to 30 Frost Street, Cambridge, MA 02140
-*/
-#include <math.h>
-
-#if UNK
-/* almost 2^16384 */
-long double MAXNUML = 1.189731495357231765021263853E4932L;
-/* 2^-64 */
-long double MACHEPL = 5.42101086242752217003726400434970855712890625E-20L;
-/* log( MAXNUML ) */
-long double MAXLOGL = 1.1356523406294143949492E4L;
-#ifdef DENORMAL
-/* log(smallest denormal number = 2^-16446) */
-long double MINLOGL = -1.13994985314888605586758E4L;
-#else
-/* log( underflow threshold = 2^(-16382) ) */
-long double MINLOGL = -1.1355137111933024058873E4L;
-#endif
-long double LOGE2L = 6.9314718055994530941723E-1L;
-long double LOG2EL = 1.4426950408889634073599E0L;
-long double PIL = 3.1415926535897932384626L;
-long double PIO2L = 1.5707963267948966192313L;
-long double PIO4L = 7.8539816339744830961566E-1L;
-#ifdef INFINITIES
-long double NANL = 0.0L / 0.0L;
-long double INFINITYL = 1.0L / 0.0L;
-#else
-long double INFINITYL = 1.189731495357231765021263853E4932L;
-long double NANL = 0.0L;
-#endif
-#endif
-#if IBMPC
-short MAXNUML[] = {0xffff,0xffff,0xffff,0xffff,0x7ffe, XPD};
-short MAXLOGL[] = {0x79ab,0xd1cf,0x17f7,0xb172,0x400c, XPD};
-#ifdef INFINITIES
-short INFINITYL[] = {0,0,0,0x8000,0x7fff, XPD};
-short NANL[] = {0,0,0,0xc000,0x7fff, XPD};
-#else
-short INFINITYL[] = {0xffff,0xffff,0xffff,0xffff,0x7ffe, XPD};
-long double NANL = 0.0L;
-#endif
-#ifdef DENORMAL
-short MINLOGL[] = {0xbaaa,0x09e2,0xfe7f,0xb21d,0xc00c, XPD};
-#else
-short MINLOGL[] = {0xeb2f,0x1210,0x8c67,0xb16c,0xc00c, XPD};
-#endif
-short MACHEPL[] = {0x0000,0x0000,0x0000,0x8000,0x3fbf, XPD};
-short LOGE2L[] = {0x79ac,0xd1cf,0x17f7,0xb172,0x3ffe, XPD};
-short LOG2EL[] = {0xf0bc,0x5c17,0x3b29,0xb8aa,0x3fff, XPD};
-short PIL[] = {0xc235,0x2168,0xdaa2,0xc90f,0x4000, XPD};
-short PIO2L[] = {0xc235,0x2168,0xdaa2,0xc90f,0x3fff, XPD};
-short PIO4L[] = {0xc235,0x2168,0xdaa2,0xc90f,0x3ffe, XPD};
-#endif
-#if MIEEE
-long MAXNUML[] = {0x7ffe0000,0xffffffff,0xffffffff};
-long MAXLOGL[] = {0x400c0000,0xb17217f7,0xd1cf79ab};
-#ifdef INFINITIES
-long INFINITY[] = {0x7fff0000,0x80000000,0x00000000};
-long NANL[] = {0x7fff0000,0xffffffff,0xffffffff};
-#else
-long INFINITYL[] = {0x7ffe0000,0xffffffff,0xffffffff};
-long double NANL = 0.0L;
-#endif
-#ifdef DENORMAL
-long MINLOGL[] = {0xc00c0000,0xb21dfe7f,0x09e2baaa};
-#else
-long MINLOGL[] = {0xc00c0000,0xb16c8c67,0x1210eb2f};
-#endif
-long MACHEPL[] = {0x3fbf0000,0x80000000,0x00000000};
-long LOGE2L[] = {0x3ffe0000,0xb17217f7,0xd1cf79ac};
-long LOG2EL[] = {0x3fff0000,0xb8aa3b29,0x5c17f0bc};
-long PIL[] = {0x40000000,0xc90fdaa2,0x2168c235};
-long PIO2L[] = {0x3fff0000,0xc90fdaa2,0x2168c235};
-long PIO4L[] = {0x3ffe0000,0xc90fdaa2,0x2168c235};
-#endif
-
-#ifdef MINUSZERO
-long double NEGZEROL = -0.0L;
-#else
-long double NEGZEROL = 0.0L;
-#endif
-
-/* Polynomial evaluator:
- * P[0] x^n + P[1] x^(n-1) + ... + P[n]
- */
-long double polevll( x, p, n )
-long double x;
-void *p;
-int n;
-{
-register long double y;
-register long double *P = (long double *)p;
-
-y = *P++;
-do
- {
- y = y * x + *P++;
- }
-while( --n );
-return(y);
-}
-
-
-
-/* Polynomial evaluator:
- * x^n + P[0] x^(n-1) + P[1] x^(n-2) + ... + P[n]
- */
-long double p1evll( x, p, n )
-long double x;
-void *p;
-int n;
-{
-register long double y;
-register long double *P = (long double *)p;
-
-n -= 1;
-y = x + *P++;
-do
- {
- y = y * x + *P++;
- }
-while( --n );
-return( y );
-}