diff options
Diffstat (limited to 'libm/ldouble/polevll.c')
-rw-r--r-- | libm/ldouble/polevll.c | 182 |
1 files changed, 0 insertions, 182 deletions
diff --git a/libm/ldouble/polevll.c b/libm/ldouble/polevll.c deleted file mode 100644 index ce37c6d9d..000000000 --- a/libm/ldouble/polevll.c +++ /dev/null @@ -1,182 +0,0 @@ -/* polevll.c - * p1evll.c - * - * Evaluate polynomial - * - * - * - * SYNOPSIS: - * - * int N; - * long double x, y, coef[N+1], polevl[]; - * - * y = polevll( x, coef, N ); - * - * - * - * DESCRIPTION: - * - * Evaluates polynomial of degree N: - * - * 2 N - * y = C + C x + C x +...+ C x - * 0 1 2 N - * - * Coefficients are stored in reverse order: - * - * coef[0] = C , ..., coef[N] = C . - * N 0 - * - * The function p1evll() assumes that coef[N] = 1.0 and is - * omitted from the array. Its calling arguments are - * otherwise the same as polevll(). - * - * This module also contains the following globally declared constants: - * MAXNUML = 1.189731495357231765021263853E4932L; - * MACHEPL = 5.42101086242752217003726400434970855712890625E-20L; - * MAXLOGL = 1.1356523406294143949492E4L; - * MINLOGL = -1.1355137111933024058873E4L; - * LOGE2L = 6.9314718055994530941723E-1L; - * LOG2EL = 1.4426950408889634073599E0L; - * PIL = 3.1415926535897932384626L; - * PIO2L = 1.5707963267948966192313L; - * PIO4L = 7.8539816339744830961566E-1L; - * - * SPEED: - * - * In the interest of speed, there are no checks for out - * of bounds arithmetic. This routine is used by most of - * the functions in the library. Depending on available - * equipment features, the user may wish to rewrite the - * program in microcode or assembly language. - * - */ - - -/* -Cephes Math Library Release 2.2: July, 1992 -Copyright 1984, 1987, 1988, 1992 by Stephen L. Moshier -Direct inquiries to 30 Frost Street, Cambridge, MA 02140 -*/ -#include <math.h> - -#if UNK -/* almost 2^16384 */ -long double MAXNUML = 1.189731495357231765021263853E4932L; -/* 2^-64 */ -long double MACHEPL = 5.42101086242752217003726400434970855712890625E-20L; -/* log( MAXNUML ) */ -long double MAXLOGL = 1.1356523406294143949492E4L; -#ifdef DENORMAL -/* log(smallest denormal number = 2^-16446) */ -long double MINLOGL = -1.13994985314888605586758E4L; -#else -/* log( underflow threshold = 2^(-16382) ) */ -long double MINLOGL = -1.1355137111933024058873E4L; -#endif -long double LOGE2L = 6.9314718055994530941723E-1L; -long double LOG2EL = 1.4426950408889634073599E0L; -long double PIL = 3.1415926535897932384626L; -long double PIO2L = 1.5707963267948966192313L; -long double PIO4L = 7.8539816339744830961566E-1L; -#ifdef INFINITIES -long double NANL = 0.0L / 0.0L; -long double INFINITYL = 1.0L / 0.0L; -#else -long double INFINITYL = 1.189731495357231765021263853E4932L; -long double NANL = 0.0L; -#endif -#endif -#if IBMPC -short MAXNUML[] = {0xffff,0xffff,0xffff,0xffff,0x7ffe, XPD}; -short MAXLOGL[] = {0x79ab,0xd1cf,0x17f7,0xb172,0x400c, XPD}; -#ifdef INFINITIES -short INFINITYL[] = {0,0,0,0x8000,0x7fff, XPD}; -short NANL[] = {0,0,0,0xc000,0x7fff, XPD}; -#else -short INFINITYL[] = {0xffff,0xffff,0xffff,0xffff,0x7ffe, XPD}; -long double NANL = 0.0L; -#endif -#ifdef DENORMAL -short MINLOGL[] = {0xbaaa,0x09e2,0xfe7f,0xb21d,0xc00c, XPD}; -#else -short MINLOGL[] = {0xeb2f,0x1210,0x8c67,0xb16c,0xc00c, XPD}; -#endif -short MACHEPL[] = {0x0000,0x0000,0x0000,0x8000,0x3fbf, XPD}; -short LOGE2L[] = {0x79ac,0xd1cf,0x17f7,0xb172,0x3ffe, XPD}; -short LOG2EL[] = {0xf0bc,0x5c17,0x3b29,0xb8aa,0x3fff, XPD}; -short PIL[] = {0xc235,0x2168,0xdaa2,0xc90f,0x4000, XPD}; -short PIO2L[] = {0xc235,0x2168,0xdaa2,0xc90f,0x3fff, XPD}; -short PIO4L[] = {0xc235,0x2168,0xdaa2,0xc90f,0x3ffe, XPD}; -#endif -#if MIEEE -long MAXNUML[] = {0x7ffe0000,0xffffffff,0xffffffff}; -long MAXLOGL[] = {0x400c0000,0xb17217f7,0xd1cf79ab}; -#ifdef INFINITIES -long INFINITY[] = {0x7fff0000,0x80000000,0x00000000}; -long NANL[] = {0x7fff0000,0xffffffff,0xffffffff}; -#else -long INFINITYL[] = {0x7ffe0000,0xffffffff,0xffffffff}; -long double NANL = 0.0L; -#endif -#ifdef DENORMAL -long MINLOGL[] = {0xc00c0000,0xb21dfe7f,0x09e2baaa}; -#else -long MINLOGL[] = {0xc00c0000,0xb16c8c67,0x1210eb2f}; -#endif -long MACHEPL[] = {0x3fbf0000,0x80000000,0x00000000}; -long LOGE2L[] = {0x3ffe0000,0xb17217f7,0xd1cf79ac}; -long LOG2EL[] = {0x3fff0000,0xb8aa3b29,0x5c17f0bc}; -long PIL[] = {0x40000000,0xc90fdaa2,0x2168c235}; -long PIO2L[] = {0x3fff0000,0xc90fdaa2,0x2168c235}; -long PIO4L[] = {0x3ffe0000,0xc90fdaa2,0x2168c235}; -#endif - -#ifdef MINUSZERO -long double NEGZEROL = -0.0L; -#else -long double NEGZEROL = 0.0L; -#endif - -/* Polynomial evaluator: - * P[0] x^n + P[1] x^(n-1) + ... + P[n] - */ -long double polevll( x, p, n ) -long double x; -void *p; -int n; -{ -register long double y; -register long double *P = (long double *)p; - -y = *P++; -do - { - y = y * x + *P++; - } -while( --n ); -return(y); -} - - - -/* Polynomial evaluator: - * x^n + P[0] x^(n-1) + P[1] x^(n-2) + ... + P[n] - */ -long double p1evll( x, p, n ) -long double x; -void *p; -int n; -{ -register long double y; -register long double *P = (long double *)p; - -n -= 1; -y = x + *P++; -do - { - y = y * x + *P++; - } -while( --n ); -return( y ); -} |