diff options
Diffstat (limited to 'libm/ldouble/nbdtrl.c')
-rw-r--r-- | libm/ldouble/nbdtrl.c | 197 |
1 files changed, 0 insertions, 197 deletions
diff --git a/libm/ldouble/nbdtrl.c b/libm/ldouble/nbdtrl.c deleted file mode 100644 index 91593f544..000000000 --- a/libm/ldouble/nbdtrl.c +++ /dev/null @@ -1,197 +0,0 @@ -/* nbdtrl.c - * - * Negative binomial distribution - * - * - * - * SYNOPSIS: - * - * int k, n; - * long double p, y, nbdtrl(); - * - * y = nbdtrl( k, n, p ); - * - * - * - * DESCRIPTION: - * - * Returns the sum of the terms 0 through k of the negative - * binomial distribution: - * - * k - * -- ( n+j-1 ) n j - * > ( ) p (1-p) - * -- ( j ) - * j=0 - * - * In a sequence of Bernoulli trials, this is the probability - * that k or fewer failures precede the nth success. - * - * The terms are not computed individually; instead the incomplete - * beta integral is employed, according to the formula - * - * y = nbdtr( k, n, p ) = incbet( n, k+1, p ). - * - * The arguments must be positive, with p ranging from 0 to 1. - * - * - * - * ACCURACY: - * - * Tested at random points (k,n,p) with k and n between 1 and 10,000 - * and p between 0 and 1. - * - * arithmetic domain # trials peak rms - * Absolute error: - * IEEE 0,10000 10000 9.8e-15 2.1e-16 - * - */ -/* nbdtrcl.c - * - * Complemented negative binomial distribution - * - * - * - * SYNOPSIS: - * - * int k, n; - * long double p, y, nbdtrcl(); - * - * y = nbdtrcl( k, n, p ); - * - * - * - * DESCRIPTION: - * - * Returns the sum of the terms k+1 to infinity of the negative - * binomial distribution: - * - * inf - * -- ( n+j-1 ) n j - * > ( ) p (1-p) - * -- ( j ) - * j=k+1 - * - * The terms are not computed individually; instead the incomplete - * beta integral is employed, according to the formula - * - * y = nbdtrc( k, n, p ) = incbet( k+1, n, 1-p ). - * - * The arguments must be positive, with p ranging from 0 to 1. - * - * - * - * ACCURACY: - * - * See incbetl.c. - * - */ -/* nbdtril - * - * Functional inverse of negative binomial distribution - * - * - * - * SYNOPSIS: - * - * int k, n; - * long double p, y, nbdtril(); - * - * p = nbdtril( k, n, y ); - * - * - * - * DESCRIPTION: - * - * Finds the argument p such that nbdtr(k,n,p) is equal to y. - * - * ACCURACY: - * - * Tested at random points (a,b,y), with y between 0 and 1. - * - * a,b Relative error: - * arithmetic domain # trials peak rms - * IEEE 0,100 - * See also incbil.c. - */ - -/* -Cephes Math Library Release 2.3: January,1995 -Copyright 1984, 1995 by Stephen L. Moshier -*/ - -#include <math.h> -#ifdef ANSIPROT -extern long double incbetl ( long double, long double, long double ); -extern long double powl ( long double, long double ); -extern long double incbil ( long double, long double, long double ); -#else -long double incbetl(), powl(), incbil(); -#endif - -long double nbdtrcl( k, n, p ) -int k, n; -long double p; -{ -long double dk, dn; - -if( (p < 0.0L) || (p > 1.0L) ) - goto domerr; -if( k < 0 ) - { -domerr: - mtherr( "nbdtrl", DOMAIN ); - return( 0.0L ); - } -dn = n; -if( k == 0 ) - return( 1.0L - powl( p, dn ) ); - -dk = k+1; -return( incbetl( dk, dn, 1.0L - p ) ); -} - - - -long double nbdtrl( k, n, p ) -int k, n; -long double p; -{ -long double dk, dn; - -if( (p < 0.0L) || (p > 1.0L) ) - goto domerr; -if( k < 0 ) - { -domerr: - mtherr( "nbdtrl", DOMAIN ); - return( 0.0L ); - } -dn = n; -if( k == 0 ) - return( powl( p, dn ) ); - -dk = k+1; -return( incbetl( dn, dk, p ) ); -} - - -long double nbdtril( k, n, p ) -int k, n; -long double p; -{ -long double dk, dn, w; - -if( (p < 0.0L) || (p > 1.0L) ) - goto domerr; -if( k < 0 ) - { -domerr: - mtherr( "nbdtrl", DOMAIN ); - return( 0.0L ); - } -dk = k+1; -dn = n; -w = incbil( dn, dk, p ); -return( w ); -} |