diff options
Diffstat (limited to 'libm/ldouble/incbetl.c')
-rw-r--r-- | libm/ldouble/incbetl.c | 406 |
1 files changed, 0 insertions, 406 deletions
diff --git a/libm/ldouble/incbetl.c b/libm/ldouble/incbetl.c deleted file mode 100644 index fc85ead4c..000000000 --- a/libm/ldouble/incbetl.c +++ /dev/null @@ -1,406 +0,0 @@ -/* incbetl.c - * - * Incomplete beta integral - * - * - * SYNOPSIS: - * - * long double a, b, x, y, incbetl(); - * - * y = incbetl( a, b, x ); - * - * - * DESCRIPTION: - * - * Returns incomplete beta integral of the arguments, evaluated - * from zero to x. The function is defined as - * - * x - * - - - * | (a+b) | | a-1 b-1 - * ----------- | t (1-t) dt. - * - - | | - * | (a) | (b) - - * 0 - * - * The domain of definition is 0 <= x <= 1. In this - * implementation a and b are restricted to positive values. - * The integral from x to 1 may be obtained by the symmetry - * relation - * - * 1 - incbet( a, b, x ) = incbet( b, a, 1-x ). - * - * The integral is evaluated by a continued fraction expansion - * or, when b*x is small, by a power series. - * - * ACCURACY: - * - * Tested at random points (a,b,x) with x between 0 and 1. - * arithmetic domain # trials peak rms - * IEEE 0,5 20000 4.5e-18 2.4e-19 - * IEEE 0,100 100000 3.9e-17 1.0e-17 - * Half-integer a, b: - * IEEE .5,10000 100000 3.9e-14 4.4e-15 - * Outputs smaller than the IEEE gradual underflow threshold - * were excluded from these statistics. - * - * ERROR MESSAGES: - * - * message condition value returned - * incbetl domain x<0, x>1 0.0 - */ - - -/* -Cephes Math Library, Release 2.3: January, 1995 -Copyright 1984, 1995 by Stephen L. Moshier -*/ - -#include <math.h> - -#define MAXGAML 1755.455L -static long double big = 9.223372036854775808e18L; -static long double biginv = 1.084202172485504434007e-19L; -extern long double MACHEPL, MINLOGL, MAXLOGL; - -#ifdef ANSIPROT -extern long double gammal ( long double ); -extern long double lgaml ( long double ); -extern long double expl ( long double ); -extern long double logl ( long double ); -extern long double fabsl ( long double ); -extern long double powl ( long double, long double ); -static long double incbcfl( long double, long double, long double ); -static long double incbdl( long double, long double, long double ); -static long double pseriesl( long double, long double, long double ); -#else -long double gammal(), lgaml(), expl(), logl(), fabsl(), powl(); -static long double incbcfl(), incbdl(), pseriesl(); -#endif - -long double incbetl( aa, bb, xx ) -long double aa, bb, xx; -{ -long double a, b, t, x, w, xc, y; -int flag; - -if( aa <= 0.0L || bb <= 0.0L ) - goto domerr; - -if( (xx <= 0.0L) || ( xx >= 1.0L) ) - { - if( xx == 0.0L ) - return( 0.0L ); - if( xx == 1.0L ) - return( 1.0L ); -domerr: - mtherr( "incbetl", DOMAIN ); - return( 0.0L ); - } - -flag = 0; -if( (bb * xx) <= 1.0L && xx <= 0.95L) - { - t = pseriesl(aa, bb, xx); - goto done; - } - -w = 1.0L - xx; - -/* Reverse a and b if x is greater than the mean. */ -if( xx > (aa/(aa+bb)) ) - { - flag = 1; - a = bb; - b = aa; - xc = xx; - x = w; - } -else - { - a = aa; - b = bb; - xc = w; - x = xx; - } - -if( flag == 1 && (b * x) <= 1.0L && x <= 0.95L) - { - t = pseriesl(a, b, x); - goto done; - } - -/* Choose expansion for optimal convergence */ -y = x * (a+b-2.0L) - (a-1.0L); -if( y < 0.0L ) - w = incbcfl( a, b, x ); -else - w = incbdl( a, b, x ) / xc; - -/* Multiply w by the factor - a b _ _ _ - x (1-x) | (a+b) / ( a | (a) | (b) ) . */ - -y = a * logl(x); -t = b * logl(xc); -if( (a+b) < MAXGAML && fabsl(y) < MAXLOGL && fabsl(t) < MAXLOGL ) - { - t = powl(xc,b); - t *= powl(x,a); - t /= a; - t *= w; - t *= gammal(a+b) / (gammal(a) * gammal(b)); - goto done; - } -else - { - /* Resort to logarithms. */ - y += t + lgaml(a+b) - lgaml(a) - lgaml(b); - y += logl(w/a); - if( y < MINLOGL ) - t = 0.0L; - else - t = expl(y); - } - -done: - -if( flag == 1 ) - { - if( t <= MACHEPL ) - t = 1.0L - MACHEPL; - else - t = 1.0L - t; - } -return( t ); -} - -/* Continued fraction expansion #1 - * for incomplete beta integral - */ - -static long double incbcfl( a, b, x ) -long double a, b, x; -{ -long double xk, pk, pkm1, pkm2, qk, qkm1, qkm2; -long double k1, k2, k3, k4, k5, k6, k7, k8; -long double r, t, ans, thresh; -int n; - -k1 = a; -k2 = a + b; -k3 = a; -k4 = a + 1.0L; -k5 = 1.0L; -k6 = b - 1.0L; -k7 = k4; -k8 = a + 2.0L; - -pkm2 = 0.0L; -qkm2 = 1.0L; -pkm1 = 1.0L; -qkm1 = 1.0L; -ans = 1.0L; -r = 1.0L; -n = 0; -thresh = 3.0L * MACHEPL; -do - { - - xk = -( x * k1 * k2 )/( k3 * k4 ); - pk = pkm1 + pkm2 * xk; - qk = qkm1 + qkm2 * xk; - pkm2 = pkm1; - pkm1 = pk; - qkm2 = qkm1; - qkm1 = qk; - - xk = ( x * k5 * k6 )/( k7 * k8 ); - pk = pkm1 + pkm2 * xk; - qk = qkm1 + qkm2 * xk; - pkm2 = pkm1; - pkm1 = pk; - qkm2 = qkm1; - qkm1 = qk; - - if( qk != 0.0L ) - r = pk/qk; - if( r != 0.0L ) - { - t = fabsl( (ans - r)/r ); - ans = r; - } - else - t = 1.0L; - - if( t < thresh ) - goto cdone; - - k1 += 1.0L; - k2 += 1.0L; - k3 += 2.0L; - k4 += 2.0L; - k5 += 1.0L; - k6 -= 1.0L; - k7 += 2.0L; - k8 += 2.0L; - - if( (fabsl(qk) + fabsl(pk)) > big ) - { - pkm2 *= biginv; - pkm1 *= biginv; - qkm2 *= biginv; - qkm1 *= biginv; - } - if( (fabsl(qk) < biginv) || (fabsl(pk) < biginv) ) - { - pkm2 *= big; - pkm1 *= big; - qkm2 *= big; - qkm1 *= big; - } - } -while( ++n < 400 ); -mtherr( "incbetl", PLOSS ); - -cdone: -return(ans); -} - - -/* Continued fraction expansion #2 - * for incomplete beta integral - */ - -static long double incbdl( a, b, x ) -long double a, b, x; -{ -long double xk, pk, pkm1, pkm2, qk, qkm1, qkm2; -long double k1, k2, k3, k4, k5, k6, k7, k8; -long double r, t, ans, z, thresh; -int n; - -k1 = a; -k2 = b - 1.0L; -k3 = a; -k4 = a + 1.0L; -k5 = 1.0L; -k6 = a + b; -k7 = a + 1.0L; -k8 = a + 2.0L; - -pkm2 = 0.0L; -qkm2 = 1.0L; -pkm1 = 1.0L; -qkm1 = 1.0L; -z = x / (1.0L-x); -ans = 1.0L; -r = 1.0L; -n = 0; -thresh = 3.0L * MACHEPL; -do - { - - xk = -( z * k1 * k2 )/( k3 * k4 ); - pk = pkm1 + pkm2 * xk; - qk = qkm1 + qkm2 * xk; - pkm2 = pkm1; - pkm1 = pk; - qkm2 = qkm1; - qkm1 = qk; - - xk = ( z * k5 * k6 )/( k7 * k8 ); - pk = pkm1 + pkm2 * xk; - qk = qkm1 + qkm2 * xk; - pkm2 = pkm1; - pkm1 = pk; - qkm2 = qkm1; - qkm1 = qk; - - if( qk != 0.0L ) - r = pk/qk; - if( r != 0.0L ) - { - t = fabsl( (ans - r)/r ); - ans = r; - } - else - t = 1.0L; - - if( t < thresh ) - goto cdone; - - k1 += 1.0L; - k2 -= 1.0L; - k3 += 2.0L; - k4 += 2.0L; - k5 += 1.0L; - k6 += 1.0L; - k7 += 2.0L; - k8 += 2.0L; - - if( (fabsl(qk) + fabsl(pk)) > big ) - { - pkm2 *= biginv; - pkm1 *= biginv; - qkm2 *= biginv; - qkm1 *= biginv; - } - if( (fabsl(qk) < biginv) || (fabsl(pk) < biginv) ) - { - pkm2 *= big; - pkm1 *= big; - qkm2 *= big; - qkm1 *= big; - } - } -while( ++n < 400 ); -mtherr( "incbetl", PLOSS ); - -cdone: -return(ans); -} - -/* Power series for incomplete gamma integral. - Use when b*x is small. */ - -static long double pseriesl( a, b, x ) -long double a, b, x; -{ -long double s, t, u, v, n, t1, z, ai; - -ai = 1.0L / a; -u = (1.0L - b) * x; -v = u / (a + 1.0L); -t1 = v; -t = u; -n = 2.0L; -s = 0.0L; -z = MACHEPL * ai; -while( fabsl(v) > z ) - { - u = (n - b) * x / n; - t *= u; - v = t / (a + n); - s += v; - n += 1.0L; - } -s += t1; -s += ai; - -u = a * logl(x); -if( (a+b) < MAXGAML && fabsl(u) < MAXLOGL ) - { - t = gammal(a+b)/(gammal(a)*gammal(b)); - s = s * t * powl(x,a); - } -else - { - t = lgaml(a+b) - lgaml(a) - lgaml(b) + u + logl(s); - if( t < MINLOGL ) - s = 0.0L; - else - s = expl(t); - } -return(s); -} |