diff options
Diffstat (limited to 'libm/ldouble/atanhl.c')
-rw-r--r-- | libm/ldouble/atanhl.c | 163 |
1 files changed, 0 insertions, 163 deletions
diff --git a/libm/ldouble/atanhl.c b/libm/ldouble/atanhl.c deleted file mode 100644 index 3dc7bd2eb..000000000 --- a/libm/ldouble/atanhl.c +++ /dev/null @@ -1,163 +0,0 @@ -/* atanhl.c - * - * Inverse hyperbolic tangent, long double precision - * - * - * - * SYNOPSIS: - * - * long double x, y, atanhl(); - * - * y = atanhl( x ); - * - * - * - * DESCRIPTION: - * - * Returns inverse hyperbolic tangent of argument in the range - * MINLOGL to MAXLOGL. - * - * If |x| < 0.5, the rational form x + x**3 P(x)/Q(x) is - * employed. Otherwise, - * atanh(x) = 0.5 * log( (1+x)/(1-x) ). - * - * - * - * ACCURACY: - * - * Relative error: - * arithmetic domain # trials peak rms - * IEEE -1,1 30000 1.1e-19 3.3e-20 - * - */ - - - -/* -Cephes Math Library Release 2.7: May, 1998 -Copyright (C) 1987, 1991, 1998 by Stephen L. Moshier -*/ - -#include <math.h> - -#ifdef UNK -static long double P[] = { - 2.9647757819596835680719E-3L, --8.0026596513099094380633E-1L, - 7.7920941408493040219831E0L, --2.4330686602187898836837E1L, - 3.0204265014595622991082E1L, --1.2961142942114056581210E1L, -}; -static long double Q[] = { -/* 1.0000000000000000000000E0L,*/ --1.3729634163247557081869E1L, - 6.2320841104088512332185E1L, --1.2469344457045341444078E2L, - 1.1394285233959210574352E2L, --3.8883428826342169425890E1L, -}; -#endif - -#ifdef IBMPC -static short P[] = { -0x3aa2,0x036b,0xaf06,0xc24c,0x3ff6, XPD -0x528e,0x56e8,0x3af4,0xccde,0xbffe, XPD -0x9d89,0xc9a1,0xd5cf,0xf958,0x4001, XPD -0xa653,0x6cfa,0x3f04,0xc2a5,0xc003, XPD -0xc651,0x2b3d,0x55b2,0xf1a2,0x4003, XPD -0xd76d,0xf293,0xd76b,0xcf60,0xc002, XPD -}; -static short Q[] = { -/*0x0000,0x0000,0x0000,0x8000,0x3fff,*/ -0xd1b9,0x5314,0x94df,0xdbac,0xc002, XPD -0x3caa,0x0517,0x8a92,0xf948,0x4004, XPD -0x535e,0xaf5f,0x0b2a,0xf963,0xc005, XPD -0xa6f9,0xb702,0xbd8a,0xe3e2,0x4005, XPD -0xe136,0xf5ee,0xa190,0x9b88,0xc004, XPD -}; -#endif - -#ifdef MIEEE -static long P[] = { -0x3ff60000,0xc24caf06,0x036b3aa2, -0xbffe0000,0xccde3af4,0x56e8528e, -0x40010000,0xf958d5cf,0xc9a19d89, -0xc0030000,0xc2a53f04,0x6cfaa653, -0x40030000,0xf1a255b2,0x2b3dc651, -0xc0020000,0xcf60d76b,0xf293d76d, -}; -static long Q[] = { -/*0x3fff0000,0x80000000,0x00000000,*/ -0xc0020000,0xdbac94df,0x5314d1b9, -0x40040000,0xf9488a92,0x05173caa, -0xc0050000,0xf9630b2a,0xaf5f535e, -0x40050000,0xe3e2bd8a,0xb702a6f9, -0xc0040000,0x9b88a190,0xf5eee136, -}; -#endif - -extern long double MAXNUML; -#ifdef ANSIPROT -extern long double fabsl ( long double ); -extern long double logl ( long double ); -extern long double polevll ( long double, void *, int ); -extern long double p1evll ( long double, void *, int ); -#else -long double fabsl(), logl(), polevll(), p1evll(); -#endif -#ifdef INFINITIES -extern long double INFINITYL; -#endif -#ifdef NANS -extern long double NANL; -#endif - -long double atanhl(x) -long double x; -{ -long double s, z; - -#ifdef MINUSZERO -if( x == 0.0L ) - return(x); -#endif -z = fabsl(x); -if( z >= 1.0L ) - { - if( x == 1.0L ) - { -#ifdef INFINITIES - return( INFINITYL ); -#else - return( MAXNUML ); -#endif - } - if( x == -1.0L ) - { -#ifdef INFINITIES - return( -INFINITYL ); -#else - return( -MAXNUML ); -#endif - } - mtherr( "atanhl", DOMAIN ); -#ifdef NANS - return( NANL ); -#else - return( MAXNUML ); -#endif - } - -if( z < 1.0e-8L ) - return(x); - -if( z < 0.5L ) - { - z = x * x; - s = x + x * z * (polevll(z, P, 5) / p1evll(z, Q, 5)); - return(s); - } - -return( 0.5L * logl((1.0L+x)/(1.0L-x)) ); -} |