summaryrefslogtreecommitdiff
path: root/libm/float/zetacf.c
diff options
context:
space:
mode:
Diffstat (limited to 'libm/float/zetacf.c')
-rw-r--r--libm/float/zetacf.c266
1 files changed, 0 insertions, 266 deletions
diff --git a/libm/float/zetacf.c b/libm/float/zetacf.c
deleted file mode 100644
index da2ace6a4..000000000
--- a/libm/float/zetacf.c
+++ /dev/null
@@ -1,266 +0,0 @@
- /* zetacf.c
- *
- * Riemann zeta function
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, zetacf();
- *
- * y = zetacf( x );
- *
- *
- *
- * DESCRIPTION:
- *
- *
- *
- * inf.
- * - -x
- * zetac(x) = > k , x > 1,
- * -
- * k=2
- *
- * is related to the Riemann zeta function by
- *
- * Riemann zeta(x) = zetac(x) + 1.
- *
- * Extension of the function definition for x < 1 is implemented.
- * Zero is returned for x > log2(MAXNUM).
- *
- * An overflow error may occur for large negative x, due to the
- * gamma function in the reflection formula.
- *
- * ACCURACY:
- *
- * Tabulated values have full machine accuracy.
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE 1,50 30000 5.5e-7 7.5e-8
- *
- *
- */
-
-/*
-Cephes Math Library Release 2.2: July, 1992
-Copyright 1984, 1987, 1989, 1992 by Stephen L. Moshier
-Direct inquiries to 30 Frost Street, Cambridge, MA 02140
-*/
-
-#include <math.h>
-
-
-/* Riemann zeta(x) - 1
- * for integer arguments between 0 and 30.
- */
-static float azetacf[] = {
--1.50000000000000000000E0,
- 1.70141183460469231730E38, /* infinity. */
- 6.44934066848226436472E-1,
- 2.02056903159594285400E-1,
- 8.23232337111381915160E-2,
- 3.69277551433699263314E-2,
- 1.73430619844491397145E-2,
- 8.34927738192282683980E-3,
- 4.07735619794433937869E-3,
- 2.00839282608221441785E-3,
- 9.94575127818085337146E-4,
- 4.94188604119464558702E-4,
- 2.46086553308048298638E-4,
- 1.22713347578489146752E-4,
- 6.12481350587048292585E-5,
- 3.05882363070204935517E-5,
- 1.52822594086518717326E-5,
- 7.63719763789976227360E-6,
- 3.81729326499983985646E-6,
- 1.90821271655393892566E-6,
- 9.53962033872796113152E-7,
- 4.76932986787806463117E-7,
- 2.38450502727732990004E-7,
- 1.19219925965311073068E-7,
- 5.96081890512594796124E-8,
- 2.98035035146522801861E-8,
- 1.49015548283650412347E-8,
- 7.45071178983542949198E-9,
- 3.72533402478845705482E-9,
- 1.86265972351304900640E-9,
- 9.31327432419668182872E-10
-};
-
-
-/* 2**x (1 - 1/x) (zeta(x) - 1) = P(1/x)/Q(1/x), 1 <= x <= 10 */
-static float P[9] = {
- 5.85746514569725319540E11,
- 2.57534127756102572888E11,
- 4.87781159567948256438E10,
- 5.15399538023885770696E9,
- 3.41646073514754094281E8,
- 1.60837006880656492731E7,
- 5.92785467342109522998E5,
- 1.51129169964938823117E4,
- 2.01822444485997955865E2,
-};
-static float Q[8] = {
-/* 1.00000000000000000000E0,*/
- 3.90497676373371157516E11,
- 5.22858235368272161797E10,
- 5.64451517271280543351E9,
- 3.39006746015350418834E8,
- 1.79410371500126453702E7,
- 5.66666825131384797029E5,
- 1.60382976810944131506E4,
- 1.96436237223387314144E2,
-};
-
-/* log(zeta(x) - 1 - 2**-x), 10 <= x <= 50 */
-static float A[11] = {
- 8.70728567484590192539E6,
- 1.76506865670346462757E8,
- 2.60889506707483264896E10,
- 5.29806374009894791647E11,
- 2.26888156119238241487E13,
- 3.31884402932705083599E14,
- 5.13778997975868230192E15,
--1.98123688133907171455E15,
--9.92763810039983572356E16,
- 7.82905376180870586444E16,
- 9.26786275768927717187E16,
-};
-static float B[10] = {
-/* 1.00000000000000000000E0,*/
--7.92625410563741062861E6,
--1.60529969932920229676E8,
--2.37669260975543221788E10,
--4.80319584350455169857E11,
--2.07820961754173320170E13,
--2.96075404507272223680E14,
--4.86299103694609136686E15,
- 5.34589509675789930199E15,
- 5.71464111092297631292E16,
--1.79915597658676556828E16,
-};
-
-/* (1-x) (zeta(x) - 1), 0 <= x <= 1 */
-
-static float R[6] = {
--3.28717474506562731748E-1,
- 1.55162528742623950834E1,
--2.48762831680821954401E2,
- 1.01050368053237678329E3,
- 1.26726061410235149405E4,
--1.11578094770515181334E5,
-};
-static float S[5] = {
-/* 1.00000000000000000000E0,*/
- 1.95107674914060531512E1,
- 3.17710311750646984099E2,
- 3.03835500874445748734E3,
- 2.03665876435770579345E4,
- 7.43853965136767874343E4,
-};
-
-
-#define MAXL2 127
-
-/*
- * Riemann zeta function, minus one
- */
-
-extern float MACHEPF, PIO2F, MAXNUMF, PIF;
-
-#ifdef ANSIC
-extern float sinf ( float xx );
-extern float floorf ( float x );
-extern float gammaf ( float xx );
-extern float powf ( float x, float y );
-extern float expf ( float xx );
-extern float polevlf ( float xx, float *coef, int N );
-extern float p1evlf ( float xx, float *coef, int N );
-#else
-float sinf(), floorf(), gammaf(), powf(), expf();
-float polevlf(), p1evlf();
-#endif
-
-float zetacf(float xx)
-{
-int i;
-float x, a, b, s, w;
-
-x = xx;
-if( x < 0.0 )
- {
- if( x < -30.8148 )
- {
- mtherr( "zetacf", OVERFLOW );
- return(0.0);
- }
- s = 1.0 - x;
- w = zetacf( s );
- b = sinf(PIO2F*x) * powf(2.0*PIF, x) * gammaf(s) * (1.0 + w) / PIF;
- return(b - 1.0);
- }
-
-if( x >= MAXL2 )
- return(0.0); /* because first term is 2**-x */
-
-/* Tabulated values for integer argument */
-w = floorf(x);
-if( w == x )
- {
- i = x;
- if( i < 31 )
- {
- return( azetacf[i] );
- }
- }
-
-
-if( x < 1.0 )
- {
- w = 1.0 - x;
- a = polevlf( x, R, 5 ) / ( w * p1evlf( x, S, 5 ));
- return( a );
- }
-
-if( x == 1.0 )
- {
- mtherr( "zetacf", SING );
- return( MAXNUMF );
- }
-
-if( x <= 10.0 )
- {
- b = powf( 2.0, x ) * (x - 1.0);
- w = 1.0/x;
- s = (x * polevlf( w, P, 8 )) / (b * p1evlf( w, Q, 8 ));
- return( s );
- }
-
-if( x <= 50.0 )
- {
- b = powf( 2.0, -x );
- w = polevlf( x, A, 10 ) / p1evlf( x, B, 10 );
- w = expf(w) + b;
- return(w);
- }
-
-
-/* Basic sum of inverse powers */
-
-
-s = 0.0;
-a = 1.0;
-do
- {
- a += 2.0;
- b = powf( a, -x );
- s += b;
- }
-while( b/s > MACHEPF );
-
-b = powf( 2.0, -x );
-s = (s + b)/(1.0-b);
-return(s);
-}