summaryrefslogtreecommitdiff
path: root/libm/float/sindgf.c
diff options
context:
space:
mode:
Diffstat (limited to 'libm/float/sindgf.c')
-rw-r--r--libm/float/sindgf.c232
1 files changed, 0 insertions, 232 deletions
diff --git a/libm/float/sindgf.c b/libm/float/sindgf.c
deleted file mode 100644
index a3f5851c8..000000000
--- a/libm/float/sindgf.c
+++ /dev/null
@@ -1,232 +0,0 @@
-/* sindgf.c
- *
- * Circular sine of angle in degrees
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, sindgf();
- *
- * y = sindgf( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Range reduction is into intervals of 45 degrees.
- *
- * Two polynomial approximating functions are employed.
- * Between 0 and pi/4 the sine is approximated by
- * x + x**3 P(x**2).
- * Between pi/4 and pi/2 the cosine is represented as
- * 1 - x**2 Q(x**2).
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE +-3600 100,000 1.2e-7 3.0e-8
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * sin total loss x > 2^24 0.0
- *
- */
-
-/* cosdgf.c
- *
- * Circular cosine of angle in degrees
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, cosdgf();
- *
- * y = cosdgf( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Range reduction is into intervals of 45 degrees.
- *
- * Two polynomial approximating functions are employed.
- * Between 0 and pi/4 the cosine is approximated by
- * 1 - x**2 Q(x**2).
- * Between pi/4 and pi/2 the sine is represented as
- * x + x**3 P(x**2).
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE -8192,+8192 100,000 3.0e-7 3.0e-8
- */
-
-/*
-Cephes Math Library Release 2.2: June, 1992
-Copyright 1985, 1987, 1988, 1992 by Stephen L. Moshier
-Direct inquiries to 30 Frost Street, Cambridge, MA 02140
-*/
-
-
-/* Single precision circular sine
- * test interval: [-pi/4, +pi/4]
- * trials: 10000
- * peak relative error: 6.8e-8
- * rms relative error: 2.6e-8
- */
-#include <math.h>
-
-
-/*static float FOPI = 1.27323954473516;*/
-
-extern float PIO4F;
-
-/* These are for a 24-bit significand: */
-static float T24M1 = 16777215.;
-
-static float PI180 = 0.0174532925199432957692; /* pi/180 */
-
-float sindgf( float xx )
-{
-float x, y, z;
-long j;
-int sign;
-
-sign = 1;
-x = xx;
-if( xx < 0 )
- {
- sign = -1;
- x = -xx;
- }
-if( x > T24M1 )
- {
- mtherr( "sindgf", TLOSS );
- return(0.0);
- }
-j = 0.022222222222222222222 * x; /* integer part of x/45 */
-y = j;
-/* map zeros to origin */
-if( j & 1 )
- {
- j += 1;
- y += 1.0;
- }
-j &= 7; /* octant modulo 360 degrees */
-/* reflect in x axis */
-if( j > 3)
- {
- sign = -sign;
- j -= 4;
- }
-
-x = x - y * 45.0;
-x *= PI180; /* multiply by pi/180 to convert to radians */
-
-z = x * x;
-if( (j==1) || (j==2) )
- {
-/*
- y = ((( 2.4462803166E-5 * z
- - 1.3887580023E-3) * z
- + 4.1666650433E-2) * z
- - 4.9999999968E-1) * z
- + 1.0;
-*/
-
-/* measured relative error in +/- pi/4 is 7.8e-8 */
- y = (( 2.443315711809948E-005 * z
- - 1.388731625493765E-003) * z
- + 4.166664568298827E-002) * z * z;
- y -= 0.5 * z;
- y += 1.0;
- }
-else
- {
-/* Theoretical relative error = 3.8e-9 in [-pi/4, +pi/4] */
- y = ((-1.9515295891E-4 * z
- + 8.3321608736E-3) * z
- - 1.6666654611E-1) * z * x;
- y += x;
- }
-
-if(sign < 0)
- y = -y;
-return( y);
-}
-
-
-/* Single precision circular cosine
- * test interval: [-pi/4, +pi/4]
- * trials: 10000
- * peak relative error: 8.3e-8
- * rms relative error: 2.2e-8
- */
-
-float cosdgf( float xx )
-{
-register float x, y, z;
-int j, sign;
-
-/* make argument positive */
-sign = 1;
-x = xx;
-if( x < 0 )
- x = -x;
-
-if( x > T24M1 )
- {
- mtherr( "cosdgf", TLOSS );
- return(0.0);
- }
-
-j = 0.02222222222222222222222 * x; /* integer part of x/PIO4 */
-y = j;
-/* integer and fractional part modulo one octant */
-if( j & 1 ) /* map zeros to origin */
- {
- j += 1;
- y += 1.0;
- }
-j &= 7;
-if( j > 3)
- {
- j -=4;
- sign = -sign;
- }
-
-if( j > 1 )
- sign = -sign;
-
-x = x - y * 45.0; /* x mod 45 degrees */
-x *= PI180; /* multiply by pi/180 to convert to radians */
-
-z = x * x;
-
-if( (j==1) || (j==2) )
- {
- y = (((-1.9515295891E-4 * z
- + 8.3321608736E-3) * z
- - 1.6666654611E-1) * z * x)
- + x;
- }
-else
- {
- y = (( 2.443315711809948E-005 * z
- - 1.388731625493765E-003) * z
- + 4.166664568298827E-002) * z * z;
- y -= 0.5 * z;
- y += 1.0;
- }
-if(sign < 0)
- y = -y;
-return( y );
-}
-