diff options
Diffstat (limited to 'libm/float/k1f.c')
-rw-r--r-- | libm/float/k1f.c | 174 |
1 files changed, 174 insertions, 0 deletions
diff --git a/libm/float/k1f.c b/libm/float/k1f.c new file mode 100644 index 000000000..d5b9bdfce --- /dev/null +++ b/libm/float/k1f.c @@ -0,0 +1,174 @@ +/* k1f.c + * + * Modified Bessel function, third kind, order one + * + * + * + * SYNOPSIS: + * + * float x, y, k1f(); + * + * y = k1f( x ); + * + * + * + * DESCRIPTION: + * + * Computes the modified Bessel function of the third kind + * of order one of the argument. + * + * The range is partitioned into the two intervals [0,2] and + * (2, infinity). Chebyshev polynomial expansions are employed + * in each interval. + * + * + * + * ACCURACY: + * + * Relative error: + * arithmetic domain # trials peak rms + * IEEE 0, 30 30000 4.6e-7 7.6e-8 + * + * ERROR MESSAGES: + * + * message condition value returned + * k1 domain x <= 0 MAXNUM + * + */ +/* k1ef.c + * + * Modified Bessel function, third kind, order one, + * exponentially scaled + * + * + * + * SYNOPSIS: + * + * float x, y, k1ef(); + * + * y = k1ef( x ); + * + * + * + * DESCRIPTION: + * + * Returns exponentially scaled modified Bessel function + * of the third kind of order one of the argument: + * + * k1e(x) = exp(x) * k1(x). + * + * + * + * ACCURACY: + * + * Relative error: + * arithmetic domain # trials peak rms + * IEEE 0, 30 30000 4.9e-7 6.7e-8 + * See k1(). + * + */ + +/* +Cephes Math Library Release 2.2: June, 1992 +Copyright 1984, 1987, 1992 by Stephen L. Moshier +Direct inquiries to 30 Frost Street, Cambridge, MA 02140 +*/ + +#include <math.h> + +/* Chebyshev coefficients for x(K1(x) - log(x/2) I1(x)) + * in the interval [0,2]. + * + * lim(x->0){ x(K1(x) - log(x/2) I1(x)) } = 1. + */ + +#define MINNUMF 6.0e-39 +static float A[] = +{ +-2.21338763073472585583E-8f, +-2.43340614156596823496E-6f, +-1.73028895751305206302E-4f, +-6.97572385963986435018E-3f, +-1.22611180822657148235E-1f, +-3.53155960776544875667E-1f, + 1.52530022733894777053E0f +}; + + + + +/* Chebyshev coefficients for exp(x) sqrt(x) K1(x) + * in the interval [2,infinity]. + * + * lim(x->inf){ exp(x) sqrt(x) K1(x) } = sqrt(pi/2). + */ + +static float B[] = +{ + 2.01504975519703286596E-9f, +-1.03457624656780970260E-8f, + 5.74108412545004946722E-8f, +-3.50196060308781257119E-7f, + 2.40648494783721712015E-6f, +-1.93619797416608296024E-5f, + 1.95215518471351631108E-4f, +-2.85781685962277938680E-3f, + 1.03923736576817238437E-1f, + 2.72062619048444266945E0f +}; + + + +extern float MAXNUMF; +#ifdef ANSIC +float chbevlf(float, float *, int); +float expf(float), i1f(float), logf(float), sqrtf(float); +#else +float chbevlf(), expf(), i1f(), logf(), sqrtf(); +#endif + +float k1f(float xx) +{ +float x, y; + +x = xx; +if( x <= MINNUMF ) + { + mtherr( "k1f", DOMAIN ); + return( MAXNUMF ); + } + +if( x <= 2.0f ) + { + y = x * x - 2.0f; + y = logf( 0.5f * x ) * i1f(x) + chbevlf( y, A, 7 ) / x; + return( y ); + } + +return( expf(-x) * chbevlf( 8.0f/x - 2.0f, B, 10 ) / sqrtf(x) ); + +} + + + +float k1ef( float xx ) +{ +float x, y; + +x = xx; +if( x <= 0.0f ) + { + mtherr( "k1ef", DOMAIN ); + return( MAXNUMF ); + } + +if( x <= 2.0f ) + { + y = x * x - 2.0f; + y = logf( 0.5f * x ) * i1f(x) + chbevlf( y, A, 7 ) / x; + return( y * expf(x) ); + } + +return( chbevlf( 8.0f/x - 2.0f, B, 10 ) / sqrtf(x) ); + +} |