summaryrefslogtreecommitdiff
path: root/libm/float/expf.c
diff options
context:
space:
mode:
Diffstat (limited to 'libm/float/expf.c')
-rw-r--r--libm/float/expf.c122
1 files changed, 0 insertions, 122 deletions
diff --git a/libm/float/expf.c b/libm/float/expf.c
deleted file mode 100644
index 073678b99..000000000
--- a/libm/float/expf.c
+++ /dev/null
@@ -1,122 +0,0 @@
-/* expf.c
- *
- * Exponential function
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, expf();
- *
- * y = expf( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns e (2.71828...) raised to the x power.
- *
- * Range reduction is accomplished by separating the argument
- * into an integer k and fraction f such that
- *
- * x k f
- * e = 2 e.
- *
- * A polynomial is used to approximate exp(f)
- * in the basic range [-0.5, 0.5].
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE +- MAXLOG 100000 1.7e-7 2.8e-8
- *
- *
- * Error amplification in the exponential function can be
- * a serious matter. The error propagation involves
- * exp( X(1+delta) ) = exp(X) ( 1 + X*delta + ... ),
- * which shows that a 1 lsb error in representing X produces
- * a relative error of X times 1 lsb in the function.
- * While the routine gives an accurate result for arguments
- * that are exactly represented by a double precision
- * computer number, the result contains amplified roundoff
- * error for large arguments not exactly represented.
- *
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * expf underflow x < MINLOGF 0.0
- * expf overflow x > MAXLOGF MAXNUMF
- *
- */
-
-/*
-Cephes Math Library Release 2.2: June, 1992
-Copyright 1984, 1987, 1989 by Stephen L. Moshier
-Direct inquiries to 30 Frost Street, Cambridge, MA 02140
-*/
-
-/* Single precision exponential function.
- * test interval: [-0.5, +0.5]
- * trials: 80000
- * peak relative error: 7.6e-8
- * rms relative error: 2.8e-8
- */
-#include <math.h>
-extern float LOG2EF, MAXLOGF, MINLOGF, MAXNUMF;
-
-static float C1 = 0.693359375;
-static float C2 = -2.12194440e-4;
-
-
-
-float floorf( float ), ldexpf( float, int );
-
-float expf( float xx )
-{
-float x, z;
-int n;
-
-x = xx;
-
-
-if( x > MAXLOGF)
- {
- mtherr( "expf", OVERFLOW );
- return( MAXNUMF );
- }
-
-if( x < MINLOGF )
- {
- mtherr( "expf", UNDERFLOW );
- return(0.0);
- }
-
-/* Express e**x = e**g 2**n
- * = e**g e**( n loge(2) )
- * = e**( g + n loge(2) )
- */
-z = floorf( LOG2EF * x + 0.5 ); /* floor() truncates toward -infinity. */
-x -= z * C1;
-x -= z * C2;
-n = z;
-
-z = x * x;
-/* Theoretical peak relative error in [-0.5, +0.5] is 4.2e-9. */
-z =
-((((( 1.9875691500E-4 * x
- + 1.3981999507E-3) * x
- + 8.3334519073E-3) * x
- + 4.1665795894E-2) * x
- + 1.6666665459E-1) * x
- + 5.0000001201E-1) * z
- + x
- + 1.0;
-
-/* multiply by power of 2 */
-x = ldexpf( z, n );
-
-return( x );
-}