diff options
Diffstat (limited to 'libm/float/expf.c')
-rw-r--r-- | libm/float/expf.c | 122 |
1 files changed, 0 insertions, 122 deletions
diff --git a/libm/float/expf.c b/libm/float/expf.c deleted file mode 100644 index 073678b99..000000000 --- a/libm/float/expf.c +++ /dev/null @@ -1,122 +0,0 @@ -/* expf.c - * - * Exponential function - * - * - * - * SYNOPSIS: - * - * float x, y, expf(); - * - * y = expf( x ); - * - * - * - * DESCRIPTION: - * - * Returns e (2.71828...) raised to the x power. - * - * Range reduction is accomplished by separating the argument - * into an integer k and fraction f such that - * - * x k f - * e = 2 e. - * - * A polynomial is used to approximate exp(f) - * in the basic range [-0.5, 0.5]. - * - * - * ACCURACY: - * - * Relative error: - * arithmetic domain # trials peak rms - * IEEE +- MAXLOG 100000 1.7e-7 2.8e-8 - * - * - * Error amplification in the exponential function can be - * a serious matter. The error propagation involves - * exp( X(1+delta) ) = exp(X) ( 1 + X*delta + ... ), - * which shows that a 1 lsb error in representing X produces - * a relative error of X times 1 lsb in the function. - * While the routine gives an accurate result for arguments - * that are exactly represented by a double precision - * computer number, the result contains amplified roundoff - * error for large arguments not exactly represented. - * - * - * ERROR MESSAGES: - * - * message condition value returned - * expf underflow x < MINLOGF 0.0 - * expf overflow x > MAXLOGF MAXNUMF - * - */ - -/* -Cephes Math Library Release 2.2: June, 1992 -Copyright 1984, 1987, 1989 by Stephen L. Moshier -Direct inquiries to 30 Frost Street, Cambridge, MA 02140 -*/ - -/* Single precision exponential function. - * test interval: [-0.5, +0.5] - * trials: 80000 - * peak relative error: 7.6e-8 - * rms relative error: 2.8e-8 - */ -#include <math.h> -extern float LOG2EF, MAXLOGF, MINLOGF, MAXNUMF; - -static float C1 = 0.693359375; -static float C2 = -2.12194440e-4; - - - -float floorf( float ), ldexpf( float, int ); - -float expf( float xx ) -{ -float x, z; -int n; - -x = xx; - - -if( x > MAXLOGF) - { - mtherr( "expf", OVERFLOW ); - return( MAXNUMF ); - } - -if( x < MINLOGF ) - { - mtherr( "expf", UNDERFLOW ); - return(0.0); - } - -/* Express e**x = e**g 2**n - * = e**g e**( n loge(2) ) - * = e**( g + n loge(2) ) - */ -z = floorf( LOG2EF * x + 0.5 ); /* floor() truncates toward -infinity. */ -x -= z * C1; -x -= z * C2; -n = z; - -z = x * x; -/* Theoretical peak relative error in [-0.5, +0.5] is 4.2e-9. */ -z = -((((( 1.9875691500E-4 * x - + 1.3981999507E-3) * x - + 8.3334519073E-3) * x - + 4.1665795894E-2) * x - + 1.6666665459E-1) * x - + 5.0000001201E-1) * z - + x - + 1.0; - -/* multiply by power of 2 */ -x = ldexpf( z, n ); - -return( x ); -} |