summaryrefslogtreecommitdiff
path: root/libm/float/ellief.c
diff options
context:
space:
mode:
Diffstat (limited to 'libm/float/ellief.c')
-rw-r--r--libm/float/ellief.c115
1 files changed, 0 insertions, 115 deletions
diff --git a/libm/float/ellief.c b/libm/float/ellief.c
deleted file mode 100644
index 5c3f822df..000000000
--- a/libm/float/ellief.c
+++ /dev/null
@@ -1,115 +0,0 @@
-/* ellief.c
- *
- * Incomplete elliptic integral of the second kind
- *
- *
- *
- * SYNOPSIS:
- *
- * float phi, m, y, ellief();
- *
- * y = ellief( phi, m );
- *
- *
- *
- * DESCRIPTION:
- *
- * Approximates the integral
- *
- *
- * phi
- * -
- * | |
- * | 2
- * E(phi\m) = | sqrt( 1 - m sin t ) dt
- * |
- * | |
- * -
- * 0
- *
- * of amplitude phi and modulus m, using the arithmetic -
- * geometric mean algorithm.
- *
- *
- *
- * ACCURACY:
- *
- * Tested at random arguments with phi in [0, 2] and m in
- * [0, 1].
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE 0,2 10000 4.5e-7 7.4e-8
- *
- *
- */
-
-
-/*
-Cephes Math Library Release 2.2: July, 1992
-Copyright 1984, 1987, 1992 by Stephen L. Moshier
-Direct inquiries to 30 Frost Street, Cambridge, MA 02140
-*/
-
-/* Incomplete elliptic integral of second kind */
-
-#include <math.h>
-
-extern float PIF, PIO2F, MACHEPF;
-
-#define fabsf(x) ( (x) < 0 ? -(x) : (x) )
-
-#ifdef ANSIC
-float sqrtf(float), logf(float), sinf(float), tanf(float), atanf(float);
-float ellpef(float), ellpkf(float);
-#else
-float sqrtf(), logf(), sinf(), tanf(), atanf();
-float ellpef(), ellpkf();
-#endif
-
-
-float ellief( float phia, float ma )
-{
-float phi, m, a, b, c, e, temp;
-float lphi, t;
-int d, mod;
-
-phi = phia;
-m = ma;
-if( m == 0.0 )
- return( phi );
-if( m == 1.0 )
- return( sinf(phi) );
-lphi = phi;
-if( lphi < 0.0 )
- lphi = -lphi;
-a = 1.0;
-b = 1.0 - m;
-b = sqrtf(b);
-c = sqrtf(m);
-d = 1;
-e = 0.0;
-t = tanf( lphi );
-mod = (lphi + PIO2F)/PIF;
-
-while( fabsf(c/a) > MACHEPF )
- {
- temp = b/a;
- lphi = lphi + atanf(t*temp) + mod * PIF;
- mod = (lphi + PIO2F)/PIF;
- t = t * ( 1.0 + temp )/( 1.0 - temp * t * t );
- c = 0.5 * ( a - b );
- temp = sqrtf( a * b );
- a = 0.5 * ( a + b );
- b = temp;
- d += d;
- e += c * sinf(lphi);
- }
-
-b = 1.0 - m;
-temp = ellpef(b)/ellpkf(b);
-temp *= (atanf(t) + mod * PIF)/(d * a);
-temp += e;
-if( phi < 0.0 )
- temp = -temp;
-return( temp );
-}