diff options
Diffstat (limited to 'libm/float/clogf.c')
-rw-r--r-- | libm/float/clogf.c | 669 |
1 files changed, 0 insertions, 669 deletions
diff --git a/libm/float/clogf.c b/libm/float/clogf.c deleted file mode 100644 index 5f4944eba..000000000 --- a/libm/float/clogf.c +++ /dev/null @@ -1,669 +0,0 @@ -/* clogf.c - * - * Complex natural logarithm - * - * - * - * SYNOPSIS: - * - * void clogf(); - * cmplxf z, w; - * - * clogf( &z, &w ); - * - * - * - * DESCRIPTION: - * - * Returns complex logarithm to the base e (2.718...) of - * the complex argument x. - * - * If z = x + iy, r = sqrt( x**2 + y**2 ), - * then - * w = log(r) + i arctan(y/x). - * - * The arctangent ranges from -PI to +PI. - * - * - * ACCURACY: - * - * Relative error: - * arithmetic domain # trials peak rms - * IEEE -10,+10 30000 1.9e-6 6.2e-8 - * - * Larger relative error can be observed for z near 1 +i0. - * In IEEE arithmetic the peak absolute error is 3.1e-7. - * - */ - -#include <math.h> -extern float MAXNUMF, MACHEPF, PIF, PIO2F; -#ifdef ANSIC -float cabsf(cmplxf *), sqrtf(float), logf(float), atan2f(float, float); -float expf(float), sinf(float), cosf(float); -float coshf(float), sinhf(float), asinf(float); -float ctansf(cmplxf *), redupif(float); -void cchshf( float, float *, float * ); -void caddf( cmplxf *, cmplxf *, cmplxf * ); -void csqrtf( cmplxf *, cmplxf * ); -#else -float cabsf(), sqrtf(), logf(), atan2f(); -float expf(), sinf(), cosf(); -float coshf(), sinhf(), asinf(); -float ctansf(), redupif(); -void cchshf(), csqrtf(), caddf(); -#endif - -#define fabsf(x) ( (x) < 0 ? -(x) : (x) ) - -void clogf( z, w ) -register cmplxf *z, *w; -{ -float p, rr; - -/*rr = sqrtf( z->r * z->r + z->i * z->i );*/ -rr = cabsf(z); -p = logf(rr); -#if ANSIC -rr = atan2f( z->i, z->r ); -#else -rr = atan2f( z->r, z->i ); -if( rr > PIF ) - rr -= PIF + PIF; -#endif -w->i = rr; -w->r = p; -} -/* cexpf() - * - * Complex exponential function - * - * - * - * SYNOPSIS: - * - * void cexpf(); - * cmplxf z, w; - * - * cexpf( &z, &w ); - * - * - * - * DESCRIPTION: - * - * Returns the exponential of the complex argument z - * into the complex result w. - * - * If - * z = x + iy, - * r = exp(x), - * - * then - * - * w = r cos y + i r sin y. - * - * - * ACCURACY: - * - * Relative error: - * arithmetic domain # trials peak rms - * IEEE -10,+10 30000 1.4e-7 4.5e-8 - * - */ - -void cexpf( z, w ) -register cmplxf *z, *w; -{ -float r; - -r = expf( z->r ); -w->r = r * cosf( z->i ); -w->i = r * sinf( z->i ); -} -/* csinf() - * - * Complex circular sine - * - * - * - * SYNOPSIS: - * - * void csinf(); - * cmplxf z, w; - * - * csinf( &z, &w ); - * - * - * - * DESCRIPTION: - * - * If - * z = x + iy, - * - * then - * - * w = sin x cosh y + i cos x sinh y. - * - * - * - * ACCURACY: - * - * Relative error: - * arithmetic domain # trials peak rms - * IEEE -10,+10 30000 1.9e-7 5.5e-8 - * - */ - -void csinf( z, w ) -register cmplxf *z, *w; -{ -float ch, sh; - -cchshf( z->i, &ch, &sh ); -w->r = sinf( z->r ) * ch; -w->i = cosf( z->r ) * sh; -} - - - -/* calculate cosh and sinh */ - -void cchshf( float xx, float *c, float *s ) -{ -float x, e, ei; - -x = xx; -if( fabsf(x) <= 0.5f ) - { - *c = coshf(x); - *s = sinhf(x); - } -else - { - e = expf(x); - ei = 0.5f/e; - e = 0.5f * e; - *s = e - ei; - *c = e + ei; - } -} - -/* ccosf() - * - * Complex circular cosine - * - * - * - * SYNOPSIS: - * - * void ccosf(); - * cmplxf z, w; - * - * ccosf( &z, &w ); - * - * - * - * DESCRIPTION: - * - * If - * z = x + iy, - * - * then - * - * w = cos x cosh y - i sin x sinh y. - * - * - * - * ACCURACY: - * - * Relative error: - * arithmetic domain # trials peak rms - * IEEE -10,+10 30000 1.8e-7 5.5e-8 - */ - -void ccosf( z, w ) -register cmplxf *z, *w; -{ -float ch, sh; - -cchshf( z->i, &ch, &sh ); -w->r = cosf( z->r ) * ch; -w->i = -sinf( z->r ) * sh; -} -/* ctanf() - * - * Complex circular tangent - * - * - * - * SYNOPSIS: - * - * void ctanf(); - * cmplxf z, w; - * - * ctanf( &z, &w ); - * - * - * - * DESCRIPTION: - * - * If - * z = x + iy, - * - * then - * - * sin 2x + i sinh 2y - * w = --------------------. - * cos 2x + cosh 2y - * - * On the real axis the denominator is zero at odd multiples - * of PI/2. The denominator is evaluated by its Taylor - * series near these points. - * - * - * ACCURACY: - * - * Relative error: - * arithmetic domain # trials peak rms - * IEEE -10,+10 30000 3.3e-7 5.1e-8 - */ - -void ctanf( z, w ) -register cmplxf *z, *w; -{ -float d; - -d = cosf( 2.0f * z->r ) + coshf( 2.0f * z->i ); - -if( fabsf(d) < 0.25f ) - d = ctansf(z); - -if( d == 0.0f ) - { - mtherr( "ctanf", OVERFLOW ); - w->r = MAXNUMF; - w->i = MAXNUMF; - return; - } - -w->r = sinf( 2.0f * z->r ) / d; -w->i = sinhf( 2.0f * z->i ) / d; -} -/* ccotf() - * - * Complex circular cotangent - * - * - * - * SYNOPSIS: - * - * void ccotf(); - * cmplxf z, w; - * - * ccotf( &z, &w ); - * - * - * - * DESCRIPTION: - * - * If - * z = x + iy, - * - * then - * - * sin 2x - i sinh 2y - * w = --------------------. - * cosh 2y - cos 2x - * - * On the real axis, the denominator has zeros at even - * multiples of PI/2. Near these points it is evaluated - * by a Taylor series. - * - * - * ACCURACY: - * - * Relative error: - * arithmetic domain # trials peak rms - * IEEE -10,+10 30000 3.6e-7 5.7e-8 - * Also tested by ctan * ccot = 1 + i0. - */ - -void ccotf( z, w ) -register cmplxf *z, *w; -{ -float d; - - -d = coshf(2.0f * z->i) - cosf(2.0f * z->r); - -if( fabsf(d) < 0.25f ) - d = ctansf(z); - -if( d == 0.0f ) - { - mtherr( "ccotf", OVERFLOW ); - w->r = MAXNUMF; - w->i = MAXNUMF; - return; - } - -d = 1.0f/d; -w->r = sinf( 2.0f * z->r ) * d; -w->i = -sinhf( 2.0f * z->i ) * d; -} - -/* Program to subtract nearest integer multiple of PI */ -/* extended precision value of PI: */ - -static float DP1 = 3.140625; -static float DP2 = 9.67502593994140625E-4; -static float DP3 = 1.509957990978376432E-7; - - -float redupif(float xx) -{ -float x, t; -long i; - -x = xx; -t = x/PIF; -if( t >= 0.0f ) - t += 0.5f; -else - t -= 0.5f; - -i = t; /* the multiple */ -t = i; -t = ((x - t * DP1) - t * DP2) - t * DP3; -return(t); -} - -/* Taylor series expansion for cosh(2y) - cos(2x) */ - -float ctansf(z) -cmplxf *z; -{ -float f, x, x2, y, y2, rn, t, d; - -x = fabsf( 2.0f * z->r ); -y = fabsf( 2.0f * z->i ); - -x = redupif(x); - -x = x * x; -y = y * y; -x2 = 1.0f; -y2 = 1.0f; -f = 1.0f; -rn = 0.0f; -d = 0.0f; -do - { - rn += 1.0f; - f *= rn; - rn += 1.0f; - f *= rn; - x2 *= x; - y2 *= y; - t = y2 + x2; - t /= f; - d += t; - - rn += 1.0f; - f *= rn; - rn += 1.0f; - f *= rn; - x2 *= x; - y2 *= y; - t = y2 - x2; - t /= f; - d += t; - } -while( fabsf(t/d) > MACHEPF ); -return(d); -} -/* casinf() - * - * Complex circular arc sine - * - * - * - * SYNOPSIS: - * - * void casinf(); - * cmplxf z, w; - * - * casinf( &z, &w ); - * - * - * - * DESCRIPTION: - * - * Inverse complex sine: - * - * 2 - * w = -i clog( iz + csqrt( 1 - z ) ). - * - * - * ACCURACY: - * - * Relative error: - * arithmetic domain # trials peak rms - * IEEE -10,+10 30000 1.1e-5 1.5e-6 - * Larger relative error can be observed for z near zero. - * - */ - -void casinf( z, w ) -cmplxf *z, *w; -{ -float x, y; -static cmplxf ca, ct, zz, z2; -/* -float cn, n; -static float a, b, s, t, u, v, y2; -static cmplxf sum; -*/ - -x = z->r; -y = z->i; - -if( y == 0.0f ) - { - if( fabsf(x) > 1.0f ) - { - w->r = PIO2F; - w->i = 0.0f; - mtherr( "casinf", DOMAIN ); - } - else - { - w->r = asinf(x); - w->i = 0.0f; - } - return; - } - -/* Power series expansion */ -/* -b = cabsf(z); -if( b < 0.125 ) -{ -z2.r = (x - y) * (x + y); -z2.i = 2.0 * x * y; - -cn = 1.0; -n = 1.0; -ca.r = x; -ca.i = y; -sum.r = x; -sum.i = y; -do - { - ct.r = z2.r * ca.r - z2.i * ca.i; - ct.i = z2.r * ca.i + z2.i * ca.r; - ca.r = ct.r; - ca.i = ct.i; - - cn *= n; - n += 1.0; - cn /= n; - n += 1.0; - b = cn/n; - - ct.r *= b; - ct.i *= b; - sum.r += ct.r; - sum.i += ct.i; - b = fabsf(ct.r) + fabsf(ct.i); - } -while( b > MACHEPF ); -w->r = sum.r; -w->i = sum.i; -return; -} -*/ - - -ca.r = x; -ca.i = y; - -ct.r = -ca.i; /* iz */ -ct.i = ca.r; - - /* sqrt( 1 - z*z) */ -/* cmul( &ca, &ca, &zz ) */ -zz.r = (ca.r - ca.i) * (ca.r + ca.i); /*x * x - y * y */ -zz.i = 2.0f * ca.r * ca.i; - -zz.r = 1.0f - zz.r; -zz.i = -zz.i; -csqrtf( &zz, &z2 ); - -caddf( &z2, &ct, &zz ); -clogf( &zz, &zz ); -w->r = zz.i; /* mult by 1/i = -i */ -w->i = -zz.r; -return; -} -/* cacosf() - * - * Complex circular arc cosine - * - * - * - * SYNOPSIS: - * - * void cacosf(); - * cmplxf z, w; - * - * cacosf( &z, &w ); - * - * - * - * DESCRIPTION: - * - * - * w = arccos z = PI/2 - arcsin z. - * - * - * - * - * ACCURACY: - * - * Relative error: - * arithmetic domain # trials peak rms - * IEEE -10,+10 30000 9.2e-6 1.2e-6 - * - */ - -void cacosf( z, w ) -cmplxf *z, *w; -{ - -casinf( z, w ); -w->r = PIO2F - w->r; -w->i = -w->i; -} -/* catan() - * - * Complex circular arc tangent - * - * - * - * SYNOPSIS: - * - * void catan(); - * cmplxf z, w; - * - * catan( &z, &w ); - * - * - * - * DESCRIPTION: - * - * If - * z = x + iy, - * - * then - * 1 ( 2x ) - * Re w = - arctan(-----------) + k PI - * 2 ( 2 2) - * (1 - x - y ) - * - * ( 2 2) - * 1 (x + (y+1) ) - * Im w = - log(------------) - * 4 ( 2 2) - * (x + (y-1) ) - * - * Where k is an arbitrary integer. - * - * - * - * ACCURACY: - * - * Relative error: - * arithmetic domain # trials peak rms - * IEEE -10,+10 30000 2.3e-6 5.2e-8 - * - */ - -void catanf( z, w ) -cmplxf *z, *w; -{ -float a, t, x, x2, y; - -x = z->r; -y = z->i; - -if( (x == 0.0f) && (y > 1.0f) ) - goto ovrf; - -x2 = x * x; -a = 1.0f - x2 - (y * y); -if( a == 0.0f ) - goto ovrf; - -#if ANSIC -t = 0.5f * atan2f( 2.0f * x, a ); -#else -t = 0.5f * atan2f( a, 2.0f * x ); -#endif -w->r = redupif( t ); - -t = y - 1.0f; -a = x2 + (t * t); -if( a == 0.0f ) - goto ovrf; - -t = y + 1.0f; -a = (x2 + (t * t))/a; -w->i = 0.25f*logf(a); -return; - -ovrf: -mtherr( "catanf", OVERFLOW ); -w->r = MAXNUMF; -w->i = MAXNUMF; -} |