summaryrefslogtreecommitdiff
path: root/libm/float/airyf.c
diff options
context:
space:
mode:
Diffstat (limited to 'libm/float/airyf.c')
-rw-r--r--libm/float/airyf.c377
1 files changed, 0 insertions, 377 deletions
diff --git a/libm/float/airyf.c b/libm/float/airyf.c
deleted file mode 100644
index a84a5c861..000000000
--- a/libm/float/airyf.c
+++ /dev/null
@@ -1,377 +0,0 @@
-/* airy.c
- *
- * Airy function
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, ai, aip, bi, bip;
- * int airyf();
- *
- * airyf( x, _&ai, _&aip, _&bi, _&bip );
- *
- *
- *
- * DESCRIPTION:
- *
- * Solution of the differential equation
- *
- * y"(x) = xy.
- *
- * The function returns the two independent solutions Ai, Bi
- * and their first derivatives Ai'(x), Bi'(x).
- *
- * Evaluation is by power series summation for small x,
- * by rational minimax approximations for large x.
- *
- *
- *
- * ACCURACY:
- * Error criterion is absolute when function <= 1, relative
- * when function > 1, except * denotes relative error criterion.
- * For large negative x, the absolute error increases as x^1.5.
- * For large positive x, the relative error increases as x^1.5.
- *
- * Arithmetic domain function # trials peak rms
- * IEEE -10, 0 Ai 50000 7.0e-7 1.2e-7
- * IEEE 0, 10 Ai 50000 9.9e-6* 6.8e-7*
- * IEEE -10, 0 Ai' 50000 2.4e-6 3.5e-7
- * IEEE 0, 10 Ai' 50000 8.7e-6* 6.2e-7*
- * IEEE -10, 10 Bi 100000 2.2e-6 2.6e-7
- * IEEE -10, 10 Bi' 50000 2.2e-6 3.5e-7
- *
- */
- /* airy.c */
-
-/*
-Cephes Math Library Release 2.2: June, 1992
-Copyright 1984, 1987, 1989, 1992 by Stephen L. Moshier
-Direct inquiries to 30 Frost Street, Cambridge, MA 02140
-*/
-
-#include <math.h>
-
-static float c1 = 0.35502805388781723926;
-static float c2 = 0.258819403792806798405;
-static float sqrt3 = 1.732050807568877293527;
-static float sqpii = 5.64189583547756286948E-1;
-extern float PIF;
-
-extern float MAXNUMF, MACHEPF;
-#define MAXAIRY 25.77
-
-/* Note, these expansions are for double precision accuracy;
- * they have not yet been redesigned for single precision.
- */
-static float AN[8] = {
- 3.46538101525629032477e-1,
- 1.20075952739645805542e1,
- 7.62796053615234516538e1,
- 1.68089224934630576269e2,
- 1.59756391350164413639e2,
- 7.05360906840444183113e1,
- 1.40264691163389668864e1,
- 9.99999999999999995305e-1,
-};
-static float AD[8] = {
- 5.67594532638770212846e-1,
- 1.47562562584847203173e1,
- 8.45138970141474626562e1,
- 1.77318088145400459522e2,
- 1.64234692871529701831e2,
- 7.14778400825575695274e1,
- 1.40959135607834029598e1,
- 1.00000000000000000470e0,
-};
-
-
-static float APN[8] = {
- 6.13759184814035759225e-1,
- 1.47454670787755323881e1,
- 8.20584123476060982430e1,
- 1.71184781360976385540e2,
- 1.59317847137141783523e2,
- 6.99778599330103016170e1,
- 1.39470856980481566958e1,
- 1.00000000000000000550e0,
-};
-static float APD[8] = {
- 3.34203677749736953049e-1,
- 1.11810297306158156705e1,
- 7.11727352147859965283e1,
- 1.58778084372838313640e2,
- 1.53206427475809220834e2,
- 6.86752304592780337944e1,
- 1.38498634758259442477e1,
- 9.99999999999999994502e-1,
-};
-
-static float BN16[5] = {
--2.53240795869364152689e-1,
- 5.75285167332467384228e-1,
--3.29907036873225371650e-1,
- 6.44404068948199951727e-2,
--3.82519546641336734394e-3,
-};
-static float BD16[5] = {
-/* 1.00000000000000000000e0,*/
--7.15685095054035237902e0,
- 1.06039580715664694291e1,
--5.23246636471251500874e0,
- 9.57395864378383833152e-1,
--5.50828147163549611107e-2,
-};
-
-static float BPPN[5] = {
- 4.65461162774651610328e-1,
--1.08992173800493920734e0,
- 6.38800117371827987759e-1,
--1.26844349553102907034e-1,
- 7.62487844342109852105e-3,
-};
-static float BPPD[5] = {
-/* 1.00000000000000000000e0,*/
--8.70622787633159124240e0,
- 1.38993162704553213172e1,
--7.14116144616431159572e0,
- 1.34008595960680518666e0,
--7.84273211323341930448e-2,
-};
-
-static float AFN[9] = {
--1.31696323418331795333e-1,
--6.26456544431912369773e-1,
--6.93158036036933542233e-1,
--2.79779981545119124951e-1,
--4.91900132609500318020e-2,
--4.06265923594885404393e-3,
--1.59276496239262096340e-4,
--2.77649108155232920844e-6,
--1.67787698489114633780e-8,
-};
-static float AFD[9] = {
-/* 1.00000000000000000000e0,*/
- 1.33560420706553243746e1,
- 3.26825032795224613948e1,
- 2.67367040941499554804e1,
- 9.18707402907259625840e0,
- 1.47529146771666414581e0,
- 1.15687173795188044134e-1,
- 4.40291641615211203805e-3,
- 7.54720348287414296618e-5,
- 4.51850092970580378464e-7,
-};
-
-static float AGN[11] = {
- 1.97339932091685679179e-2,
- 3.91103029615688277255e-1,
- 1.06579897599595591108e0,
- 9.39169229816650230044e-1,
- 3.51465656105547619242e-1,
- 6.33888919628925490927e-2,
- 5.85804113048388458567e-3,
- 2.82851600836737019778e-4,
- 6.98793669997260967291e-6,
- 8.11789239554389293311e-8,
- 3.41551784765923618484e-10,
-};
-static float AGD[10] = {
-/* 1.00000000000000000000e0,*/
- 9.30892908077441974853e0,
- 1.98352928718312140417e1,
- 1.55646628932864612953e1,
- 5.47686069422975497931e0,
- 9.54293611618961883998e-1,
- 8.64580826352392193095e-2,
- 4.12656523824222607191e-3,
- 1.01259085116509135510e-4,
- 1.17166733214413521882e-6,
- 4.91834570062930015649e-9,
-};
-
-static float APFN[9] = {
- 1.85365624022535566142e-1,
- 8.86712188052584095637e-1,
- 9.87391981747398547272e-1,
- 4.01241082318003734092e-1,
- 7.10304926289631174579e-2,
- 5.90618657995661810071e-3,
- 2.33051409401776799569e-4,
- 4.08718778289035454598e-6,
- 2.48379932900442457853e-8,
-};
-static float APFD[9] = {
-/* 1.00000000000000000000e0,*/
- 1.47345854687502542552e1,
- 3.75423933435489594466e1,
- 3.14657751203046424330e1,
- 1.09969125207298778536e1,
- 1.78885054766999417817e0,
- 1.41733275753662636873e-1,
- 5.44066067017226003627e-3,
- 9.39421290654511171663e-5,
- 5.65978713036027009243e-7,
-};
-
-static float APGN[11] = {
--3.55615429033082288335e-2,
--6.37311518129435504426e-1,
--1.70856738884312371053e0,
--1.50221872117316635393e0,
--5.63606665822102676611e-1,
--1.02101031120216891789e-1,
--9.48396695961445269093e-3,
--4.60325307486780994357e-4,
--1.14300836484517375919e-5,
--1.33415518685547420648e-7,
--5.63803833958893494476e-10,
-};
-static float APGD[11] = {
-/* 1.00000000000000000000e0,*/
- 9.85865801696130355144e0,
- 2.16401867356585941885e1,
- 1.73130776389749389525e1,
- 6.17872175280828766327e0,
- 1.08848694396321495475e0,
- 9.95005543440888479402e-2,
- 4.78468199683886610842e-3,
- 1.18159633322838625562e-4,
- 1.37480673554219441465e-6,
- 5.79912514929147598821e-9,
-};
-
-#define fabsf(x) ( (x) < 0 ? -(x) : (x) )
-
-float polevlf(float, float *, int);
-float p1evlf(float, float *, int);
-float sinf(float), cosf(float), expf(float), sqrtf(float);
-
-int airyf( float xx, float *ai, float *aip, float *bi, float *bip )
-{
-float x, z, zz, t, f, g, uf, ug, k, zeta, theta;
-int domflg;
-
-x = xx;
-domflg = 0;
-if( x > MAXAIRY )
- {
- *ai = 0;
- *aip = 0;
- *bi = MAXNUMF;
- *bip = MAXNUMF;
- return(-1);
- }
-
-if( x < -2.09 )
- {
- domflg = 15;
- t = sqrtf(-x);
- zeta = -2.0 * x * t / 3.0;
- t = sqrtf(t);
- k = sqpii / t;
- z = 1.0/zeta;
- zz = z * z;
- uf = 1.0 + zz * polevlf( zz, AFN, 8 ) / p1evlf( zz, AFD, 9 );
- ug = z * polevlf( zz, AGN, 10 ) / p1evlf( zz, AGD, 10 );
- theta = zeta + 0.25 * PIF;
- f = sinf( theta );
- g = cosf( theta );
- *ai = k * (f * uf - g * ug);
- *bi = k * (g * uf + f * ug);
- uf = 1.0 + zz * polevlf( zz, APFN, 8 ) / p1evlf( zz, APFD, 9 );
- ug = z * polevlf( zz, APGN, 10 ) / p1evlf( zz, APGD, 10 );
- k = sqpii * t;
- *aip = -k * (g * uf + f * ug);
- *bip = k * (f * uf - g * ug);
- return(0);
- }
-
-if( x >= 2.09 ) /* cbrt(9) */
- {
- domflg = 5;
- t = sqrtf(x);
- zeta = 2.0 * x * t / 3.0;
- g = expf( zeta );
- t = sqrtf(t);
- k = 2.0 * t * g;
- z = 1.0/zeta;
- f = polevlf( z, AN, 7 ) / polevlf( z, AD, 7 );
- *ai = sqpii * f / k;
- k = -0.5 * sqpii * t / g;
- f = polevlf( z, APN, 7 ) / polevlf( z, APD, 7 );
- *aip = f * k;
-
- if( x > 8.3203353 ) /* zeta > 16 */
- {
- f = z * polevlf( z, BN16, 4 ) / p1evlf( z, BD16, 5 );
- k = sqpii * g;
- *bi = k * (1.0 + f) / t;
- f = z * polevlf( z, BPPN, 4 ) / p1evlf( z, BPPD, 5 );
- *bip = k * t * (1.0 + f);
- return(0);
- }
- }
-
-f = 1.0;
-g = x;
-t = 1.0;
-uf = 1.0;
-ug = x;
-k = 1.0;
-z = x * x * x;
-while( t > MACHEPF )
- {
- uf *= z;
- k += 1.0;
- uf /=k;
- ug *= z;
- k += 1.0;
- ug /=k;
- uf /=k;
- f += uf;
- k += 1.0;
- ug /=k;
- g += ug;
- t = fabsf(uf/f);
- }
-uf = c1 * f;
-ug = c2 * g;
-if( (domflg & 1) == 0 )
- *ai = uf - ug;
-if( (domflg & 2) == 0 )
- *bi = sqrt3 * (uf + ug);
-
-/* the deriviative of ai */
-k = 4.0;
-uf = x * x/2.0;
-ug = z/3.0;
-f = uf;
-g = 1.0 + ug;
-uf /= 3.0;
-t = 1.0;
-
-while( t > MACHEPF )
- {
- uf *= z;
- ug /=k;
- k += 1.0;
- ug *= z;
- uf /=k;
- f += uf;
- k += 1.0;
- ug /=k;
- uf /=k;
- g += ug;
- k += 1.0;
- t = fabsf(ug/g);
- }
-
-uf = c1 * f;
-ug = c2 * g;
-if( (domflg & 4) == 0 )
- *aip = uf - ug;
-if( (domflg & 8) == 0 )
- *bip = sqrt3 * (uf + ug);
-return(0);
-}