diff options
Diffstat (limited to 'libm/e_exp.c')
-rw-r--r-- | libm/e_exp.c | 167 |
1 files changed, 167 insertions, 0 deletions
diff --git a/libm/e_exp.c b/libm/e_exp.c new file mode 100644 index 000000000..9eba853c8 --- /dev/null +++ b/libm/e_exp.c @@ -0,0 +1,167 @@ +/* @(#)e_exp.c 5.1 93/09/24 */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +#if defined(LIBM_SCCS) && !defined(lint) +static char rcsid[] = "$NetBSD: e_exp.c,v 1.8 1995/05/10 20:45:03 jtc Exp $"; +#endif + +/* __ieee754_exp(x) + * Returns the exponential of x. + * + * Method + * 1. Argument reduction: + * Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658. + * Given x, find r and integer k such that + * + * x = k*ln2 + r, |r| <= 0.5*ln2. + * + * Here r will be represented as r = hi-lo for better + * accuracy. + * + * 2. Approximation of exp(r) by a special rational function on + * the interval [0,0.34658]: + * Write + * R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ... + * We use a special Reme algorithm on [0,0.34658] to generate + * a polynomial of degree 5 to approximate R. The maximum error + * of this polynomial approximation is bounded by 2**-59. In + * other words, + * R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5 + * (where z=r*r, and the values of P1 to P5 are listed below) + * and + * | 5 | -59 + * | 2.0+P1*z+...+P5*z - R(z) | <= 2 + * | | + * The computation of exp(r) thus becomes + * 2*r + * exp(r) = 1 + ------- + * R - r + * r*R1(r) + * = 1 + r + ----------- (for better accuracy) + * 2 - R1(r) + * where + * 2 4 10 + * R1(r) = r - (P1*r + P2*r + ... + P5*r ). + * + * 3. Scale back to obtain exp(x): + * From step 1, we have + * exp(x) = 2^k * exp(r) + * + * Special cases: + * exp(INF) is INF, exp(NaN) is NaN; + * exp(-INF) is 0, and + * for finite argument, only exp(0)=1 is exact. + * + * Accuracy: + * according to an error analysis, the error is always less than + * 1 ulp (unit in the last place). + * + * Misc. info. + * For IEEE double + * if x > 7.09782712893383973096e+02 then exp(x) overflow + * if x < -7.45133219101941108420e+02 then exp(x) underflow + * + * Constants: + * The hexadecimal values are the intended ones for the following + * constants. The decimal values may be used, provided that the + * compiler will convert from decimal to binary accurately enough + * to produce the hexadecimal values shown. + */ + +#include "math.h" +#include "math_private.h" + +#ifdef __STDC__ +static const double +#else +static double +#endif +one = 1.0, +halF[2] = {0.5,-0.5,}, +huge = 1.0e+300, +twom1000= 9.33263618503218878990e-302, /* 2**-1000=0x01700000,0*/ +o_threshold= 7.09782712893383973096e+02, /* 0x40862E42, 0xFEFA39EF */ +u_threshold= -7.45133219101941108420e+02, /* 0xc0874910, 0xD52D3051 */ +ln2HI[2] ={ 6.93147180369123816490e-01, /* 0x3fe62e42, 0xfee00000 */ + -6.93147180369123816490e-01,},/* 0xbfe62e42, 0xfee00000 */ +ln2LO[2] ={ 1.90821492927058770002e-10, /* 0x3dea39ef, 0x35793c76 */ + -1.90821492927058770002e-10,},/* 0xbdea39ef, 0x35793c76 */ +invln2 = 1.44269504088896338700e+00, /* 0x3ff71547, 0x652b82fe */ +P1 = 1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */ +P2 = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */ +P3 = 6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */ +P4 = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */ +P5 = 4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */ + + +#ifdef __STDC__ + double __ieee754_exp(double x) /* default IEEE double exp */ +#else + double __ieee754_exp(x) /* default IEEE double exp */ + double x; +#endif +{ + double y,hi,lo,c,t; + int32_t k,xsb; + u_int32_t hx; + + GET_HIGH_WORD(hx,x); + xsb = (hx>>31)&1; /* sign bit of x */ + hx &= 0x7fffffff; /* high word of |x| */ + + /* filter out non-finite argument */ + if(hx >= 0x40862E42) { /* if |x|>=709.78... */ + if(hx>=0x7ff00000) { + u_int32_t lx; + GET_LOW_WORD(lx,x); + if(((hx&0xfffff)|lx)!=0) + return x+x; /* NaN */ + else return (xsb==0)? x:0.0; /* exp(+-inf)={inf,0} */ + } + if(x > o_threshold) return huge*huge; /* overflow */ + if(x < u_threshold) return twom1000*twom1000; /* underflow */ + } + + /* argument reduction */ + if(hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */ + if(hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */ + hi = x-ln2HI[xsb]; lo=ln2LO[xsb]; k = 1-xsb-xsb; + } else { + k = invln2*x+halF[xsb]; + t = k; + hi = x - t*ln2HI[0]; /* t*ln2HI is exact here */ + lo = t*ln2LO[0]; + } + x = hi - lo; + } + else if(hx < 0x3e300000) { /* when |x|<2**-28 */ + if(huge+x>one) return one+x;/* trigger inexact */ + } + else k = 0; + + /* x is now in primary range */ + t = x*x; + c = x - t*(P1+t*(P2+t*(P3+t*(P4+t*P5)))); + if(k==0) return one-((x*c)/(c-2.0)-x); + else y = one-((lo-(x*c)/(2.0-c))-hi); + if(k >= -1021) { + u_int32_t hy; + GET_HIGH_WORD(hy,y); + SET_HIGH_WORD(y,hy+(k<<20)); /* add k to y's exponent */ + return y; + } else { + u_int32_t hy; + GET_HIGH_WORD(hy,y); + SET_HIGH_WORD(y,hy+((k+1000)<<20)); /* add k to y's exponent */ + return y*twom1000; + } +} |