diff options
Diffstat (limited to 'libm/double/tan.c')
-rw-r--r-- | libm/double/tan.c | 304 |
1 files changed, 0 insertions, 304 deletions
diff --git a/libm/double/tan.c b/libm/double/tan.c deleted file mode 100644 index 603f4b6a9..000000000 --- a/libm/double/tan.c +++ /dev/null @@ -1,304 +0,0 @@ -/* tan.c - * - * Circular tangent - * - * - * - * SYNOPSIS: - * - * double x, y, tan(); - * - * y = tan( x ); - * - * - * - * DESCRIPTION: - * - * Returns the circular tangent of the radian argument x. - * - * Range reduction is modulo pi/4. A rational function - * x + x**3 P(x**2)/Q(x**2) - * is employed in the basic interval [0, pi/4]. - * - * - * - * ACCURACY: - * - * Relative error: - * arithmetic domain # trials peak rms - * DEC +-1.07e9 44000 4.1e-17 1.0e-17 - * IEEE +-1.07e9 30000 2.9e-16 8.1e-17 - * - * ERROR MESSAGES: - * - * message condition value returned - * tan total loss x > 1.073741824e9 0.0 - * - */ -/* cot.c - * - * Circular cotangent - * - * - * - * SYNOPSIS: - * - * double x, y, cot(); - * - * y = cot( x ); - * - * - * - * DESCRIPTION: - * - * Returns the circular cotangent of the radian argument x. - * - * Range reduction is modulo pi/4. A rational function - * x + x**3 P(x**2)/Q(x**2) - * is employed in the basic interval [0, pi/4]. - * - * - * - * ACCURACY: - * - * Relative error: - * arithmetic domain # trials peak rms - * IEEE +-1.07e9 30000 2.9e-16 8.2e-17 - * - * - * ERROR MESSAGES: - * - * message condition value returned - * cot total loss x > 1.073741824e9 0.0 - * cot singularity x = 0 INFINITY - * - */ - -/* -Cephes Math Library Release 2.8: June, 2000 -yright 1984, 1995, 2000 by Stephen L. Moshier -*/ - -#include <math.h> - -#ifdef UNK -static double P[] = { --1.30936939181383777646E4, - 1.15351664838587416140E6, --1.79565251976484877988E7 -}; -static double Q[] = { -/* 1.00000000000000000000E0,*/ - 1.36812963470692954678E4, --1.32089234440210967447E6, - 2.50083801823357915839E7, --5.38695755929454629881E7 -}; -static double DP1 = 7.853981554508209228515625E-1; -static double DP2 = 7.94662735614792836714E-9; -static double DP3 = 3.06161699786838294307E-17; -static double lossth = 1.073741824e9; -#endif - -#ifdef DEC -static unsigned short P[] = { -0143514,0113306,0111171,0174674, -0045214,0147545,0027744,0167346, -0146210,0177526,0114514,0105660 -}; -static unsigned short Q[] = { -/*0040200,0000000,0000000,0000000,*/ -0043525,0142457,0072633,0025617, -0145241,0036742,0140525,0162256, -0046276,0146176,0013526,0143573, -0146515,0077401,0162762,0150607 -}; -/* 7.853981629014015197753906250000E-1 */ -static unsigned short P1[] = {0040111,0007732,0120000,0000000,}; -/* 4.960467869796758577649598009884E-10 */ -static unsigned short P2[] = {0030410,0055060,0100000,0000000,}; -/* 2.860594363054915898381331279295E-18 */ -static unsigned short P3[] = {0021523,0011431,0105056,0001560,}; -#define DP1 *(double *)P1 -#define DP2 *(double *)P2 -#define DP3 *(double *)P3 -static double lossth = 1.073741824e9; -#endif - -#ifdef IBMPC -static unsigned short P[] = { -0x3f38,0xd24f,0x92d8,0xc0c9, -0x9ddd,0xa5fc,0x99ec,0x4131, -0x9176,0xd329,0x1fea,0xc171 -}; -static unsigned short Q[] = { -/*0x0000,0x0000,0x0000,0x3ff0,*/ -0x6572,0xeeb3,0xb8a5,0x40ca, -0xbc96,0x582a,0x27bc,0xc134, -0xd8ef,0xc2ea,0xd98f,0x4177, -0x5a31,0x3cbe,0xafe0,0xc189 -}; -/* - 7.85398125648498535156E-1, - 3.77489470793079817668E-8, - 2.69515142907905952645E-15, -*/ -static unsigned short P1[] = {0x0000,0x4000,0x21fb,0x3fe9}; -static unsigned short P2[] = {0x0000,0x0000,0x442d,0x3e64}; -static unsigned short P3[] = {0x5170,0x98cc,0x4698,0x3ce8}; -#define DP1 *(double *)P1 -#define DP2 *(double *)P2 -#define DP3 *(double *)P3 -static double lossth = 1.073741824e9; -#endif - -#ifdef MIEEE -static unsigned short P[] = { -0xc0c9,0x92d8,0xd24f,0x3f38, -0x4131,0x99ec,0xa5fc,0x9ddd, -0xc171,0x1fea,0xd329,0x9176 -}; -static unsigned short Q[] = { -0x40ca,0xb8a5,0xeeb3,0x6572, -0xc134,0x27bc,0x582a,0xbc96, -0x4177,0xd98f,0xc2ea,0xd8ef, -0xc189,0xafe0,0x3cbe,0x5a31 -}; -static unsigned short P1[] = { -0x3fe9,0x21fb,0x4000,0x0000 -}; -static unsigned short P2[] = { -0x3e64,0x442d,0x0000,0x0000 -}; -static unsigned short P3[] = { -0x3ce8,0x4698,0x98cc,0x5170, -}; -#define DP1 *(double *)P1 -#define DP2 *(double *)P2 -#define DP3 *(double *)P3 -static double lossth = 1.073741824e9; -#endif - -#ifdef ANSIPROT -extern double polevl ( double, void *, int ); -extern double p1evl ( double, void *, int ); -extern double floor ( double ); -extern double ldexp ( double, int ); -extern int isnan ( double ); -extern int isfinite ( double ); -static double tancot(double, int); -#else -double polevl(), p1evl(), floor(), ldexp(); -static double tancot(); -int isnan(), isfinite(); -#endif -extern double PIO4; -extern double INFINITY; -extern double NAN; - -double tan(x) -double x; -{ -#ifdef MINUSZERO -if( x == 0.0 ) - return(x); -#endif -#ifdef NANS -if( isnan(x) ) - return(x); -if( !isfinite(x) ) - { - mtherr( "tan", DOMAIN ); - return(NAN); - } -#endif -return( tancot(x,0) ); -} - - -double cot(x) -double x; -{ - -if( x == 0.0 ) - { - mtherr( "cot", SING ); - return( INFINITY ); - } -return( tancot(x,1) ); -} - - -static double tancot( xx, cotflg ) -double xx; -int cotflg; -{ -double x, y, z, zz; -int j, sign; - -/* make argument positive but save the sign */ -if( xx < 0 ) - { - x = -xx; - sign = -1; - } -else - { - x = xx; - sign = 1; - } - -if( x > lossth ) - { - if( cotflg ) - mtherr( "cot", TLOSS ); - else - mtherr( "tan", TLOSS ); - return(0.0); - } - -/* compute x mod PIO4 */ -y = floor( x/PIO4 ); - -/* strip high bits of integer part */ -z = ldexp( y, -3 ); -z = floor(z); /* integer part of y/8 */ -z = y - ldexp( z, 3 ); /* y - 16 * (y/16) */ - -/* integer and fractional part modulo one octant */ -j = z; - -/* map zeros and singularities to origin */ -if( j & 1 ) - { - j += 1; - y += 1.0; - } - -z = ((x - y * DP1) - y * DP2) - y * DP3; - -zz = z * z; - -if( zz > 1.0e-14 ) - y = z + z * (zz * polevl( zz, P, 2 )/p1evl(zz, Q, 4)); -else - y = z; - -if( j & 2 ) - { - if( cotflg ) - y = -y; - else - y = -1.0/y; - } -else - { - if( cotflg ) - y = 1.0/y; - } - -if( sign < 0 ) - y = -y; - -return( y ); -} |