summaryrefslogtreecommitdiff
path: root/libm/double/tan.c
diff options
context:
space:
mode:
Diffstat (limited to 'libm/double/tan.c')
-rw-r--r--libm/double/tan.c304
1 files changed, 0 insertions, 304 deletions
diff --git a/libm/double/tan.c b/libm/double/tan.c
deleted file mode 100644
index 603f4b6a9..000000000
--- a/libm/double/tan.c
+++ /dev/null
@@ -1,304 +0,0 @@
-/* tan.c
- *
- * Circular tangent
- *
- *
- *
- * SYNOPSIS:
- *
- * double x, y, tan();
- *
- * y = tan( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns the circular tangent of the radian argument x.
- *
- * Range reduction is modulo pi/4. A rational function
- * x + x**3 P(x**2)/Q(x**2)
- * is employed in the basic interval [0, pi/4].
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * DEC +-1.07e9 44000 4.1e-17 1.0e-17
- * IEEE +-1.07e9 30000 2.9e-16 8.1e-17
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * tan total loss x > 1.073741824e9 0.0
- *
- */
- /* cot.c
- *
- * Circular cotangent
- *
- *
- *
- * SYNOPSIS:
- *
- * double x, y, cot();
- *
- * y = cot( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns the circular cotangent of the radian argument x.
- *
- * Range reduction is modulo pi/4. A rational function
- * x + x**3 P(x**2)/Q(x**2)
- * is employed in the basic interval [0, pi/4].
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE +-1.07e9 30000 2.9e-16 8.2e-17
- *
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * cot total loss x > 1.073741824e9 0.0
- * cot singularity x = 0 INFINITY
- *
- */
-
-/*
-Cephes Math Library Release 2.8: June, 2000
-yright 1984, 1995, 2000 by Stephen L. Moshier
-*/
-
-#include <math.h>
-
-#ifdef UNK
-static double P[] = {
--1.30936939181383777646E4,
- 1.15351664838587416140E6,
--1.79565251976484877988E7
-};
-static double Q[] = {
-/* 1.00000000000000000000E0,*/
- 1.36812963470692954678E4,
--1.32089234440210967447E6,
- 2.50083801823357915839E7,
--5.38695755929454629881E7
-};
-static double DP1 = 7.853981554508209228515625E-1;
-static double DP2 = 7.94662735614792836714E-9;
-static double DP3 = 3.06161699786838294307E-17;
-static double lossth = 1.073741824e9;
-#endif
-
-#ifdef DEC
-static unsigned short P[] = {
-0143514,0113306,0111171,0174674,
-0045214,0147545,0027744,0167346,
-0146210,0177526,0114514,0105660
-};
-static unsigned short Q[] = {
-/*0040200,0000000,0000000,0000000,*/
-0043525,0142457,0072633,0025617,
-0145241,0036742,0140525,0162256,
-0046276,0146176,0013526,0143573,
-0146515,0077401,0162762,0150607
-};
-/* 7.853981629014015197753906250000E-1 */
-static unsigned short P1[] = {0040111,0007732,0120000,0000000,};
-/* 4.960467869796758577649598009884E-10 */
-static unsigned short P2[] = {0030410,0055060,0100000,0000000,};
-/* 2.860594363054915898381331279295E-18 */
-static unsigned short P3[] = {0021523,0011431,0105056,0001560,};
-#define DP1 *(double *)P1
-#define DP2 *(double *)P2
-#define DP3 *(double *)P3
-static double lossth = 1.073741824e9;
-#endif
-
-#ifdef IBMPC
-static unsigned short P[] = {
-0x3f38,0xd24f,0x92d8,0xc0c9,
-0x9ddd,0xa5fc,0x99ec,0x4131,
-0x9176,0xd329,0x1fea,0xc171
-};
-static unsigned short Q[] = {
-/*0x0000,0x0000,0x0000,0x3ff0,*/
-0x6572,0xeeb3,0xb8a5,0x40ca,
-0xbc96,0x582a,0x27bc,0xc134,
-0xd8ef,0xc2ea,0xd98f,0x4177,
-0x5a31,0x3cbe,0xafe0,0xc189
-};
-/*
- 7.85398125648498535156E-1,
- 3.77489470793079817668E-8,
- 2.69515142907905952645E-15,
-*/
-static unsigned short P1[] = {0x0000,0x4000,0x21fb,0x3fe9};
-static unsigned short P2[] = {0x0000,0x0000,0x442d,0x3e64};
-static unsigned short P3[] = {0x5170,0x98cc,0x4698,0x3ce8};
-#define DP1 *(double *)P1
-#define DP2 *(double *)P2
-#define DP3 *(double *)P3
-static double lossth = 1.073741824e9;
-#endif
-
-#ifdef MIEEE
-static unsigned short P[] = {
-0xc0c9,0x92d8,0xd24f,0x3f38,
-0x4131,0x99ec,0xa5fc,0x9ddd,
-0xc171,0x1fea,0xd329,0x9176
-};
-static unsigned short Q[] = {
-0x40ca,0xb8a5,0xeeb3,0x6572,
-0xc134,0x27bc,0x582a,0xbc96,
-0x4177,0xd98f,0xc2ea,0xd8ef,
-0xc189,0xafe0,0x3cbe,0x5a31
-};
-static unsigned short P1[] = {
-0x3fe9,0x21fb,0x4000,0x0000
-};
-static unsigned short P2[] = {
-0x3e64,0x442d,0x0000,0x0000
-};
-static unsigned short P3[] = {
-0x3ce8,0x4698,0x98cc,0x5170,
-};
-#define DP1 *(double *)P1
-#define DP2 *(double *)P2
-#define DP3 *(double *)P3
-static double lossth = 1.073741824e9;
-#endif
-
-#ifdef ANSIPROT
-extern double polevl ( double, void *, int );
-extern double p1evl ( double, void *, int );
-extern double floor ( double );
-extern double ldexp ( double, int );
-extern int isnan ( double );
-extern int isfinite ( double );
-static double tancot(double, int);
-#else
-double polevl(), p1evl(), floor(), ldexp();
-static double tancot();
-int isnan(), isfinite();
-#endif
-extern double PIO4;
-extern double INFINITY;
-extern double NAN;
-
-double tan(x)
-double x;
-{
-#ifdef MINUSZERO
-if( x == 0.0 )
- return(x);
-#endif
-#ifdef NANS
-if( isnan(x) )
- return(x);
-if( !isfinite(x) )
- {
- mtherr( "tan", DOMAIN );
- return(NAN);
- }
-#endif
-return( tancot(x,0) );
-}
-
-
-double cot(x)
-double x;
-{
-
-if( x == 0.0 )
- {
- mtherr( "cot", SING );
- return( INFINITY );
- }
-return( tancot(x,1) );
-}
-
-
-static double tancot( xx, cotflg )
-double xx;
-int cotflg;
-{
-double x, y, z, zz;
-int j, sign;
-
-/* make argument positive but save the sign */
-if( xx < 0 )
- {
- x = -xx;
- sign = -1;
- }
-else
- {
- x = xx;
- sign = 1;
- }
-
-if( x > lossth )
- {
- if( cotflg )
- mtherr( "cot", TLOSS );
- else
- mtherr( "tan", TLOSS );
- return(0.0);
- }
-
-/* compute x mod PIO4 */
-y = floor( x/PIO4 );
-
-/* strip high bits of integer part */
-z = ldexp( y, -3 );
-z = floor(z); /* integer part of y/8 */
-z = y - ldexp( z, 3 ); /* y - 16 * (y/16) */
-
-/* integer and fractional part modulo one octant */
-j = z;
-
-/* map zeros and singularities to origin */
-if( j & 1 )
- {
- j += 1;
- y += 1.0;
- }
-
-z = ((x - y * DP1) - y * DP2) - y * DP3;
-
-zz = z * z;
-
-if( zz > 1.0e-14 )
- y = z + z * (zz * polevl( zz, P, 2 )/p1evl(zz, Q, 4));
-else
- y = z;
-
-if( j & 2 )
- {
- if( cotflg )
- y = -y;
- else
- y = -1.0/y;
- }
-else
- {
- if( cotflg )
- y = 1.0/y;
- }
-
-if( sign < 0 )
- y = -y;
-
-return( y );
-}