summaryrefslogtreecommitdiff
path: root/libm/double/struve.c
diff options
context:
space:
mode:
Diffstat (limited to 'libm/double/struve.c')
-rw-r--r--libm/double/struve.c312
1 files changed, 0 insertions, 312 deletions
diff --git a/libm/double/struve.c b/libm/double/struve.c
deleted file mode 100644
index fabf0735e..000000000
--- a/libm/double/struve.c
+++ /dev/null
@@ -1,312 +0,0 @@
-/* struve.c
- *
- * Struve function
- *
- *
- *
- * SYNOPSIS:
- *
- * double v, x, y, struve();
- *
- * y = struve( v, x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Computes the Struve function Hv(x) of order v, argument x.
- * Negative x is rejected unless v is an integer.
- *
- * This module also contains the hypergeometric functions 1F2
- * and 3F0 and a routine for the Bessel function Yv(x) with
- * noninteger v.
- *
- *
- *
- * ACCURACY:
- *
- * Not accurately characterized, but spot checked against tables.
- *
- */
-
-
-/*
-Cephes Math Library Release 2.81: June, 2000
-Copyright 1984, 1987, 1989, 2000 by Stephen L. Moshier
-*/
-#include <math.h>
-#define DEBUG 0
-#ifdef ANSIPROT
-extern double gamma ( double );
-extern double pow ( double, double );
-extern double sqrt ( double );
-extern double yn ( int, double );
-extern double jv ( double, double );
-extern double fabs ( double );
-extern double floor ( double );
-extern double sin ( double );
-extern double cos ( double );
-double yv ( double, double );
-double onef2 (double, double, double, double, double * );
-double threef0 (double, double, double, double, double * );
-#else
-double gamma(), pow(), sqrt(), yn(), yv(), jv(), fabs(), floor();
-double sin(), cos();
-double onef2(), threef0();
-#endif
-static double stop = 1.37e-17;
-extern double MACHEP;
-
-double onef2( a, b, c, x, err )
-double a, b, c, x;
-double *err;
-{
-double n, a0, sum, t;
-double an, bn, cn, max, z;
-
-an = a;
-bn = b;
-cn = c;
-a0 = 1.0;
-sum = 1.0;
-n = 1.0;
-t = 1.0;
-max = 0.0;
-
-do
- {
- if( an == 0 )
- goto done;
- if( bn == 0 )
- goto error;
- if( cn == 0 )
- goto error;
- if( (a0 > 1.0e34) || (n > 200) )
- goto error;
- a0 *= (an * x) / (bn * cn * n);
- sum += a0;
- an += 1.0;
- bn += 1.0;
- cn += 1.0;
- n += 1.0;
- z = fabs( a0 );
- if( z > max )
- max = z;
- if( sum != 0 )
- t = fabs( a0 / sum );
- else
- t = z;
- }
-while( t > stop );
-
-done:
-
-*err = fabs( MACHEP*max /sum );
-
-#if DEBUG
- printf(" onef2 cancellation error %.5E\n", *err );
-#endif
-
-goto xit;
-
-error:
-#if DEBUG
-printf("onef2 does not converge\n");
-#endif
-*err = 1.0e38;
-
-xit:
-
-#if DEBUG
-printf("onef2( %.2E %.2E %.2E %.5E ) = %.3E %.6E\n", a, b, c, x, n, sum);
-#endif
-return(sum);
-}
-
-
-
-
-double threef0( a, b, c, x, err )
-double a, b, c, x;
-double *err;
-{
-double n, a0, sum, t, conv, conv1;
-double an, bn, cn, max, z;
-
-an = a;
-bn = b;
-cn = c;
-a0 = 1.0;
-sum = 1.0;
-n = 1.0;
-t = 1.0;
-max = 0.0;
-conv = 1.0e38;
-conv1 = conv;
-
-do
- {
- if( an == 0.0 )
- goto done;
- if( bn == 0.0 )
- goto done;
- if( cn == 0.0 )
- goto done;
- if( (a0 > 1.0e34) || (n > 200) )
- goto error;
- a0 *= (an * bn * cn * x) / n;
- an += 1.0;
- bn += 1.0;
- cn += 1.0;
- n += 1.0;
- z = fabs( a0 );
- if( z > max )
- max = z;
- if( z >= conv )
- {
- if( (z < max) && (z > conv1) )
- goto done;
- }
- conv1 = conv;
- conv = z;
- sum += a0;
- if( sum != 0 )
- t = fabs( a0 / sum );
- else
- t = z;
- }
-while( t > stop );
-
-done:
-
-t = fabs( MACHEP*max/sum );
-#if DEBUG
- printf(" threef0 cancellation error %.5E\n", t );
-#endif
-
-max = fabs( conv/sum );
-if( max > t )
- t = max;
-#if DEBUG
- printf(" threef0 convergence %.5E\n", max );
-#endif
-
-goto xit;
-
-error:
-#if DEBUG
-printf("threef0 does not converge\n");
-#endif
-t = 1.0e38;
-
-xit:
-
-#if DEBUG
-printf("threef0( %.2E %.2E %.2E %.5E ) = %.3E %.6E\n", a, b, c, x, n, sum);
-#endif
-
-*err = t;
-return(sum);
-}
-
-
-
-
-extern double PI;
-
-double struve( v, x )
-double v, x;
-{
-double y, ya, f, g, h, t;
-double onef2err, threef0err;
-
-f = floor(v);
-if( (v < 0) && ( v-f == 0.5 ) )
- {
- y = jv( -v, x );
- f = 1.0 - f;
- g = 2.0 * floor(f/2.0);
- if( g != f )
- y = -y;
- return(y);
- }
-t = 0.25*x*x;
-f = fabs(x);
-g = 1.5 * fabs(v);
-if( (f > 30.0) && (f > g) )
- {
- onef2err = 1.0e38;
- y = 0.0;
- }
-else
- {
- y = onef2( 1.0, 1.5, 1.5+v, -t, &onef2err );
- }
-
-if( (f < 18.0) || (x < 0.0) )
- {
- threef0err = 1.0e38;
- ya = 0.0;
- }
-else
- {
- ya = threef0( 1.0, 0.5, 0.5-v, -1.0/t, &threef0err );
- }
-
-f = sqrt( PI );
-h = pow( 0.5*x, v-1.0 );
-
-if( onef2err <= threef0err )
- {
- g = gamma( v + 1.5 );
- y = y * h * t / ( 0.5 * f * g );
- return(y);
- }
-else
- {
- g = gamma( v + 0.5 );
- ya = ya * h / ( f * g );
- ya = ya + yv( v, x );
- return(ya);
- }
-}
-
-
-
-
-/* Bessel function of noninteger order
- */
-
-double yv( v, x )
-double v, x;
-{
-double y, t;
-int n;
-
-y = floor( v );
-if( y == v )
- {
- n = v;
- y = yn( n, x );
- return( y );
- }
-t = PI * v;
-y = (cos(t) * jv( v, x ) - jv( -v, x ))/sin(t);
-return( y );
-}
-
-/* Crossover points between ascending series and asymptotic series
- * for Struve function
- *
- * v x
- *
- * 0 19.2
- * 1 18.95
- * 2 19.15
- * 3 19.3
- * 5 19.7
- * 10 21.35
- * 20 26.35
- * 30 32.31
- * 40 40.0
- */