diff options
Diffstat (limited to 'libm/double/stdtr.c')
-rw-r--r-- | libm/double/stdtr.c | 225 |
1 files changed, 0 insertions, 225 deletions
diff --git a/libm/double/stdtr.c b/libm/double/stdtr.c deleted file mode 100644 index 743e01704..000000000 --- a/libm/double/stdtr.c +++ /dev/null @@ -1,225 +0,0 @@ -/* stdtr.c - * - * Student's t distribution - * - * - * - * SYNOPSIS: - * - * double t, stdtr(); - * short k; - * - * y = stdtr( k, t ); - * - * - * DESCRIPTION: - * - * Computes the integral from minus infinity to t of the Student - * t distribution with integer k > 0 degrees of freedom: - * - * t - * - - * | | - * - | 2 -(k+1)/2 - * | ( (k+1)/2 ) | ( x ) - * ---------------------- | ( 1 + --- ) dx - * - | ( k ) - * sqrt( k pi ) | ( k/2 ) | - * | | - * - - * -inf. - * - * Relation to incomplete beta integral: - * - * 1 - stdtr(k,t) = 0.5 * incbet( k/2, 1/2, z ) - * where - * z = k/(k + t**2). - * - * For t < -2, this is the method of computation. For higher t, - * a direct method is derived from integration by parts. - * Since the function is symmetric about t=0, the area under the - * right tail of the density is found by calling the function - * with -t instead of t. - * - * ACCURACY: - * - * Tested at random 1 <= k <= 25. The "domain" refers to t. - * Relative error: - * arithmetic domain # trials peak rms - * IEEE -100,-2 50000 5.9e-15 1.4e-15 - * IEEE -2,100 500000 2.7e-15 4.9e-17 - */ - -/* stdtri.c - * - * Functional inverse of Student's t distribution - * - * - * - * SYNOPSIS: - * - * double p, t, stdtri(); - * int k; - * - * t = stdtri( k, p ); - * - * - * DESCRIPTION: - * - * Given probability p, finds the argument t such that stdtr(k,t) - * is equal to p. - * - * ACCURACY: - * - * Tested at random 1 <= k <= 100. The "domain" refers to p: - * Relative error: - * arithmetic domain # trials peak rms - * IEEE .001,.999 25000 5.7e-15 8.0e-16 - * IEEE 10^-6,.001 25000 2.0e-12 2.9e-14 - */ - - -/* -Cephes Math Library Release 2.8: June, 2000 -Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier -*/ - -#include <math.h> - -extern double PI, MACHEP, MAXNUM; -#ifdef ANSIPROT -extern double sqrt ( double ); -extern double atan ( double ); -extern double incbet ( double, double, double ); -extern double incbi ( double, double, double ); -extern double fabs ( double ); -#else -double sqrt(), atan(), incbet(), incbi(), fabs(); -#endif - -double stdtr( k, t ) -int k; -double t; -{ -double x, rk, z, f, tz, p, xsqk; -int j; - -if( k <= 0 ) - { - mtherr( "stdtr", DOMAIN ); - return(0.0); - } - -if( t == 0 ) - return( 0.5 ); - -if( t < -2.0 ) - { - rk = k; - z = rk / (rk + t * t); - p = 0.5 * incbet( 0.5*rk, 0.5, z ); - return( p ); - } - -/* compute integral from -t to + t */ - -if( t < 0 ) - x = -t; -else - x = t; - -rk = k; /* degrees of freedom */ -z = 1.0 + ( x * x )/rk; - -/* test if k is odd or even */ -if( (k & 1) != 0) - { - - /* computation for odd k */ - - xsqk = x/sqrt(rk); - p = atan( xsqk ); - if( k > 1 ) - { - f = 1.0; - tz = 1.0; - j = 3; - while( (j<=(k-2)) && ( (tz/f) > MACHEP ) ) - { - tz *= (j-1)/( z * j ); - f += tz; - j += 2; - } - p += f * xsqk/z; - } - p *= 2.0/PI; - } - - -else - { - - /* computation for even k */ - - f = 1.0; - tz = 1.0; - j = 2; - - while( ( j <= (k-2) ) && ( (tz/f) > MACHEP ) ) - { - tz *= (j - 1)/( z * j ); - f += tz; - j += 2; - } - p = f * x/sqrt(z*rk); - } - -/* common exit */ - - -if( t < 0 ) - p = -p; /* note destruction of relative accuracy */ - - p = 0.5 + 0.5 * p; -return(p); -} - -double stdtri( k, p ) -int k; -double p; -{ -double t, rk, z; -int rflg; - -if( k <= 0 || p <= 0.0 || p >= 1.0 ) - { - mtherr( "stdtri", DOMAIN ); - return(0.0); - } - -rk = k; - -if( p > 0.25 && p < 0.75 ) - { - if( p == 0.5 ) - return( 0.0 ); - z = 1.0 - 2.0 * p; - z = incbi( 0.5, 0.5*rk, fabs(z) ); - t = sqrt( rk*z/(1.0-z) ); - if( p < 0.5 ) - t = -t; - return( t ); - } -rflg = -1; -if( p >= 0.5) - { - p = 1.0 - p; - rflg = 1; - } -z = incbi( 0.5*rk, 0.5, 2.0*p ); - -if( MAXNUM * z < rk ) - return(rflg* MAXNUM); -t = sqrt( rk/z - rk ); -return( rflg * t ); -} |