diff options
Diffstat (limited to 'libm/double/sqrt.c')
-rw-r--r-- | libm/double/sqrt.c | 178 |
1 files changed, 178 insertions, 0 deletions
diff --git a/libm/double/sqrt.c b/libm/double/sqrt.c new file mode 100644 index 000000000..92bbce53b --- /dev/null +++ b/libm/double/sqrt.c @@ -0,0 +1,178 @@ +/* sqrt.c + * + * Square root + * + * + * + * SYNOPSIS: + * + * double x, y, sqrt(); + * + * y = sqrt( x ); + * + * + * + * DESCRIPTION: + * + * Returns the square root of x. + * + * Range reduction involves isolating the power of two of the + * argument and using a polynomial approximation to obtain + * a rough value for the square root. Then Heron's iteration + * is used three times to converge to an accurate value. + * + * + * + * ACCURACY: + * + * + * Relative error: + * arithmetic domain # trials peak rms + * DEC 0, 10 60000 2.1e-17 7.9e-18 + * IEEE 0,1.7e308 30000 1.7e-16 6.3e-17 + * + * + * ERROR MESSAGES: + * + * message condition value returned + * sqrt domain x < 0 0.0 + * + */ + +/* +Cephes Math Library Release 2.8: June, 2000 +Copyright 1984, 1987, 1988, 2000 by Stephen L. Moshier +*/ + + +#include <math.h> +#ifdef ANSIPROT +extern double frexp ( double, int * ); +extern double ldexp ( double, int ); +#else +double frexp(), ldexp(); +#endif +extern double SQRT2; /* SQRT2 = 1.41421356237309504880 */ + +double sqrt(x) +double x; +{ +int e; +#ifndef UNK +short *q; +#endif +double z, w; + +if( x <= 0.0 ) + { + if( x < 0.0 ) + mtherr( "sqrt", DOMAIN ); + return( 0.0 ); + } +w = x; +/* separate exponent and significand */ +#ifdef UNK +z = frexp( x, &e ); +#endif +#ifdef DEC +q = (short *)&x; +e = ((*q >> 7) & 0377) - 0200; +*q &= 0177; +*q |= 040000; +z = x; +#endif + +/* Note, frexp and ldexp are used in order to + * handle denormal numbers properly. + */ +#ifdef IBMPC +z = frexp( x, &e ); +q = (short *)&x; +q += 3; +/* +e = ((*q >> 4) & 0x0fff) - 0x3fe; +*q &= 0x000f; +*q |= 0x3fe0; +z = x; +*/ +#endif +#ifdef MIEEE +z = frexp( x, &e ); +q = (short *)&x; +/* +e = ((*q >> 4) & 0x0fff) - 0x3fe; +*q &= 0x000f; +*q |= 0x3fe0; +z = x; +*/ +#endif + +/* approximate square root of number between 0.5 and 1 + * relative error of approximation = 7.47e-3 + */ +x = 4.173075996388649989089E-1 + 5.9016206709064458299663E-1 * z; + +/* adjust for odd powers of 2 */ +if( (e & 1) != 0 ) + x *= SQRT2; + +/* re-insert exponent */ +#ifdef UNK +x = ldexp( x, (e >> 1) ); +#endif +#ifdef DEC +*q += ((e >> 1) & 0377) << 7; +*q &= 077777; +#endif +#ifdef IBMPC +x = ldexp( x, (e >> 1) ); +/* +*q += ((e >>1) & 0x7ff) << 4; +*q &= 077777; +*/ +#endif +#ifdef MIEEE +x = ldexp( x, (e >> 1) ); +/* +*q += ((e >>1) & 0x7ff) << 4; +*q &= 077777; +*/ +#endif + +/* Newton iterations: */ +#ifdef UNK +x = 0.5*(x + w/x); +x = 0.5*(x + w/x); +x = 0.5*(x + w/x); +#endif + +/* Note, assume the square root cannot be denormal, + * so it is safe to use integer exponent operations here. + */ +#ifdef DEC +x += w/x; +*q -= 0200; +x += w/x; +*q -= 0200; +x += w/x; +*q -= 0200; +#endif +#ifdef IBMPC +x += w/x; +*q -= 0x10; +x += w/x; +*q -= 0x10; +x += w/x; +*q -= 0x10; +#endif +#ifdef MIEEE +x += w/x; +*q -= 0x10; +x += w/x; +*q -= 0x10; +x += w/x; +*q -= 0x10; +#endif + +return(x); +} |