diff options
Diffstat (limited to 'libm/double/sindg.c')
-rw-r--r-- | libm/double/sindg.c | 308 |
1 files changed, 0 insertions, 308 deletions
diff --git a/libm/double/sindg.c b/libm/double/sindg.c deleted file mode 100644 index 8057ab68d..000000000 --- a/libm/double/sindg.c +++ /dev/null @@ -1,308 +0,0 @@ -/* sindg.c - * - * Circular sine of angle in degrees - * - * - * - * SYNOPSIS: - * - * double x, y, sindg(); - * - * y = sindg( x ); - * - * - * - * DESCRIPTION: - * - * Range reduction is into intervals of 45 degrees. - * - * Two polynomial approximating functions are employed. - * Between 0 and pi/4 the sine is approximated by - * x + x**3 P(x**2). - * Between pi/4 and pi/2 the cosine is represented as - * 1 - x**2 P(x**2). - * - * - * - * ACCURACY: - * - * Relative error: - * arithmetic domain # trials peak rms - * DEC +-1000 3100 3.3e-17 9.0e-18 - * IEEE +-1000 30000 2.3e-16 5.6e-17 - * - * ERROR MESSAGES: - * - * message condition value returned - * sindg total loss x > 8.0e14 (DEC) 0.0 - * x > 1.0e14 (IEEE) - * - */ -/* cosdg.c - * - * Circular cosine of angle in degrees - * - * - * - * SYNOPSIS: - * - * double x, y, cosdg(); - * - * y = cosdg( x ); - * - * - * - * DESCRIPTION: - * - * Range reduction is into intervals of 45 degrees. - * - * Two polynomial approximating functions are employed. - * Between 0 and pi/4 the cosine is approximated by - * 1 - x**2 P(x**2). - * Between pi/4 and pi/2 the sine is represented as - * x + x**3 P(x**2). - * - * - * ACCURACY: - * - * Relative error: - * arithmetic domain # trials peak rms - * DEC +-1000 3400 3.5e-17 9.1e-18 - * IEEE +-1000 30000 2.1e-16 5.7e-17 - * See also sin(). - * - */ - -/* Cephes Math Library Release 2.0: April, 1987 - * Copyright 1985, 1987 by Stephen L. Moshier - * Direct inquiries to 30 Frost Street, Cambridge, MA 02140 */ - -#include <math.h> - -#ifdef UNK -static double sincof[] = { - 1.58962301572218447952E-10, --2.50507477628503540135E-8, - 2.75573136213856773549E-6, --1.98412698295895384658E-4, - 8.33333333332211858862E-3, --1.66666666666666307295E-1 -}; -static double coscof[] = { - 1.13678171382044553091E-11, --2.08758833757683644217E-9, - 2.75573155429816611547E-7, --2.48015872936186303776E-5, - 1.38888888888806666760E-3, --4.16666666666666348141E-2, - 4.99999999999999999798E-1 -}; -static double PI180 = 1.74532925199432957692E-2; /* pi/180 */ -static double lossth = 1.0e14; -#endif - -#ifdef DEC -static unsigned short sincof[] = { -0030056,0143750,0177170,0073013, -0131727,0027455,0044510,0132205, -0033470,0167432,0131752,0042263, -0135120,0006400,0146776,0174027, -0036410,0104210,0104207,0137202, -0137452,0125252,0125252,0125103 -}; -static unsigned short coscof[] = { -0027107,0176030,0153315,0110312, -0131017,0072476,0007450,0123243, -0032623,0171174,0070066,0146445, -0134320,0006400,0147355,0163313, -0035666,0005540,0133012,0165067, -0137052,0125252,0125252,0125206, -0040000,0000000,0000000,0000000 -}; -static unsigned short P1[] = {0036616,0175065,0011224,0164711}; -#define PI180 *(double *)P1 -static double lossth = 8.0e14; -#endif - -#ifdef IBMPC -static unsigned short sincof[] = { -0x0ec1,0x1fcf,0xd8fd,0x3de5, -0x1691,0xa929,0xe5e5,0xbe5a, -0x4896,0x567d,0x1de3,0x3ec7, -0xdf03,0x19bf,0x01a0,0xbf2a, -0xf7d0,0x1110,0x1111,0x3f81, -0x5548,0x5555,0x5555,0xbfc5 -}; -static unsigned short coscof[] = { -0xb219,0x1ad9,0xff83,0x3da8, -0x14d4,0xc1e5,0xeea7,0xbe21, -0xd9a5,0x8e06,0x7e4f,0x3e92, -0xbcd9,0x19dd,0x01a0,0xbefa, -0x5d47,0x16c1,0xc16c,0x3f56, -0x5551,0x5555,0x5555,0xbfa5, -0x0000,0x0000,0x0000,0x3fe0 -}; - -static unsigned short P1[] = {0x9d39,0xa252,0xdf46,0x3f91}; -#define PI180 *(double *)P1 -static double lossth = 1.0e14; -#endif - -#ifdef MIEEE -static unsigned short sincof[] = { -0x3de5,0xd8fd,0x1fcf,0x0ec1, -0xbe5a,0xe5e5,0xa929,0x1691, -0x3ec7,0x1de3,0x567d,0x4896, -0xbf2a,0x01a0,0x19bf,0xdf03, -0x3f81,0x1111,0x1110,0xf7d0, -0xbfc5,0x5555,0x5555,0x5548 -}; -static unsigned short coscof[] = { -0x3da8,0xff83,0x1ad9,0xb219, -0xbe21,0xeea7,0xc1e5,0x14d4, -0x3e92,0x7e4f,0x8e06,0xd9a5, -0xbefa,0x01a0,0x19dd,0xbcd9, -0x3f56,0xc16c,0x16c1,0x5d47, -0xbfa5,0x5555,0x5555,0x5551, -0x3fe0,0x0000,0x0000,0x0000 -}; - -static unsigned short P1[] = { -0x3f91,0xdf46,0xa252,0x9d39 -}; -#define PI180 *(double *)P1 -static double lossth = 1.0e14; -#endif - -#ifdef ANSIPROT -extern double polevl ( double, void *, int ); -extern double floor ( double ); -extern double ldexp ( double, int ); -#else -double polevl(), floor(), ldexp(); -#endif -extern double PIO4; - -double sindg(x) -double x; -{ -double y, z, zz; -int j, sign; - -/* make argument positive but save the sign */ -sign = 1; -if( x < 0 ) - { - x = -x; - sign = -1; - } - -if( x > lossth ) - { - mtherr( "sindg", TLOSS ); - return(0.0); - } - -y = floor( x/45.0 ); /* integer part of x/PIO4 */ - -/* strip high bits of integer part to prevent integer overflow */ -z = ldexp( y, -4 ); -z = floor(z); /* integer part of y/8 */ -z = y - ldexp( z, 4 ); /* y - 16 * (y/16) */ - -j = z; /* convert to integer for tests on the phase angle */ -/* map zeros to origin */ -if( j & 1 ) - { - j += 1; - y += 1.0; - } -j = j & 07; /* octant modulo 360 degrees */ -/* reflect in x axis */ -if( j > 3) - { - sign = -sign; - j -= 4; - } - -z = x - y * 45.0; /* x mod 45 degrees */ -z *= PI180; /* multiply by pi/180 to convert to radians */ -zz = z * z; - -if( (j==1) || (j==2) ) - { - y = 1.0 - zz * polevl( zz, coscof, 6 ); - } -else - { - y = z + z * (zz * polevl( zz, sincof, 5 )); - } - -if(sign < 0) - y = -y; - -return(y); -} - - - - - -double cosdg(x) -double x; -{ -double y, z, zz; -int j, sign; - -/* make argument positive */ -sign = 1; -if( x < 0 ) - x = -x; - -if( x > lossth ) - { - mtherr( "cosdg", TLOSS ); - return(0.0); - } - -y = floor( x/45.0 ); -z = ldexp( y, -4 ); -z = floor(z); /* integer part of y/8 */ -z = y - ldexp( z, 4 ); /* y - 16 * (y/16) */ - -/* integer and fractional part modulo one octant */ -j = z; -if( j & 1 ) /* map zeros to origin */ - { - j += 1; - y += 1.0; - } -j = j & 07; -if( j > 3) - { - j -=4; - sign = -sign; - } - -if( j > 1 ) - sign = -sign; - -z = x - y * 45.0; /* x mod 45 degrees */ -z *= PI180; /* multiply by pi/180 to convert to radians */ - -zz = z * z; - -if( (j==1) || (j==2) ) - { - y = z + z * (zz * polevl( zz, sincof, 5 )); - } -else - { - y = 1.0 - zz * polevl( zz, coscof, 6 ); - } - -if(sign < 0) - y = -y; - -return(y); -} |